Adapting the engine to the fuel: mutator populations can reduce the mutational load by reorganizing their genome structure

Author:

Rutten Jacob Pieter,Hogeweg Paulien,Beslon Guillaume

Abstract

Abstract Background Mutators are common in bacterial populations, both in natural isolates and in the lab. The fate of these lineages, which mutation rate is increased up to 100 ×, has long been studied using population genetics models, showing that they can spread in a population following an environmental change. However in stable conditions, they suffer from the increased mutational load, hence being overcome by non-mutators. However, these results don’t take into account the fact that an elevated mutation rate can impact the genetic structure, hence changing the sensitivity of the population to mutations. Here we used Aevol, an in silico experimental evolution platform in which genomic structures are free to evolve, in order to study the fate of mutator populations evolving for a long time in constant conditions. Results Starting from wild-types that were pre-evolved for 300,000 generations, we let 100 mutator populations (point mutation rate ×100) evolve for 100,000 further generations in constant conditions. As expected all populations initially undergo a fitness loss. However, after that the mutator populations started to recover. Most populations ultimately recovered their ancestors fitness, and a significant fraction became even fitter than the non-mutator control clones that evolved in parallel. By analyzing the genomes of the mutators, we show that the fitness recovery is due to two mechanisms: i. an increase in robustness through compaction of the coding part of the mutator genomes, ii. an increase of the selection coefficient that decreases the mean-fitness of the population. Strikingly the latter is due to the accumulation of non-coding sequences in the mutators genomes. Conclusion Our results show that the mutational burden that is classically thought to be associated with mutator phenotype is escapable. On the long run mutators adapted their genomes and reshaped the distribution of mutation effects. Therewith the lineage is able to recover fitness even though the population still suffers the elevated mutation rate. Overall these results change our view of mutator dynamics: by being able to reduce the deleterious effect of the elevated mutation rate, mutator populations may be able to last for a very long time; A situation commonly observed in nature.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3