Multilocus species trees and species delimitation in a temporal context: application to the water shrews of the genus Neomys

Author:

Igea Javier,Aymerich Pere,Bannikova Anna A.,Gosálbez Joaquim,Castresana Jose

Abstract

Abstract Background Multilocus data are becoming increasingly important in determining the phylogeny of closely related species and delimiting species. In species complexes where unequivocal fossil calibrations are not available, rigorous dating of the coalescence-based species trees requires accurate mutation rates of the loci under study but, generally, these rates are unknown. Here, we obtained lineage-specific mutation rates of these loci from a higher-level phylogeny with a reliable fossil record and investigated how different choices of mutation rates and species tree models affected the split time estimates. We implemented this strategy with a genus of water shrews, Neomys, whose taxonomy has been contentious over the last century. Results We sequenced 13 introns and cytochrome b from specimens of the three species currently recognized in this genus including two subspecies of N. anomalus that were originally described as species. A Bayesian multilocus species delimitation method and estimation of gene flow supported that these subspecies are distinct evolutionary lineages that should be treated as distinct species: N. anomalus (sensu stricto), limited to part of the Iberian Peninsula, and N. milleri, with a larger Eurasian range. We then estimated mutation rates from a Bayesian relaxed clock analysis of the mammalian orthologues with several fossil calibrations. Next, using the estimated Neomys-specific rates for each locus in an isolation-with-migration model, the split time for these sister taxa was dated at 0.40 Myr ago (with a 95 % confidence interval of 0.26 – 0.86 Myr), likely coinciding with one of the major glaciations of the Middle Pleistocene. We also showed that the extrapolation of non-specific rates or the use of simpler models would lead to very different split time estimates. Conclusions We showed that the estimation of rigorous lineage-specific mutation rates for each locus allows the inference of robust split times in a species tree framework. These times, in turn, afford a better understanding of the timeframe required to achieve isolation and, eventually, speciation in sister lineages. The application of species delimitation methods and an accurate dating strategy to the genus Neomys helped to clarify its controversial taxonomy.

Funder

Plan Nacional I+D+I del Ministerio de Ciencia e Innovación

Convocatoria de ayudas a proyectos de investigación en la Red de Parques Nacionales

Russian Foundation for Basic Research

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3