Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission

Author:

Sadoudi Said,Tanougast Camel,Azzaz Mohamed Salah,Dandache Abbas

Abstract

Abstract In this paper, we propose and demonstrate experimentally a new wireless digital encryption hyperchaotic communication system based on radio frequency (RF) communication protocols for secure real-time data or image transmission. A reconfigurable hardware architecture is developed to ensure the interconnection between two field programmable gate array development platforms through XBee RF modules. To ensure the synchronization and encryption of data between the transmitter and the receiver, a feedback masking hyperchaotic synchronization technique based on a dynamic feedback modulation has been implemented to digitally synchronize the encrypter hyperchaotic systems. The obtained experimental results show the relevance of the idea of combining XBee (Zigbee or Wireless Fidelity) protocol, known for its high noise immunity, to secure hyperchaotic communications. In fact, we have recovered the information data or image correctly after real-time encrypted data or image transmission tests at a maximum distance (indoor range) of more than 30 m and with maximum digital modulation rate of 625,000 baud allowing a wireless encrypted video transmission rate of 25 images per second with a spatial resolution of 128 × 128 pixels. The obtained performance of the communication system is suitable for secure data or image transmissions in wireless sensor networks.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Reference44 articles.

1. Spanos GA, Maples TB: Performance study of a selective encryption scheme for the security of networked, real-time video. In Proceedings of the 4th International Conference on Computer Communications and Networks, Las Vegas, 20-23 Sept 1995. IEEE, Piscataway; 1995:2-10.

2. Yang T: A survey of chaotic secure communication systems. Int. J. Comput. Cogn 2004, 2(2):81-130.

3. Schneier B: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley & Sons, New York; 1996.

4. Zambreno J, Nguyen D, Choudhary AN: Exploring area/delay tradeoffs in an AES FPGA implementation. Field Programmable Logic and Applications, ed. by J Becker, M Platzner, S Vernalde. Proceedings of the 14th International Conference, FPL 2004, Leuven, 30 August-1 September 2004. Lecture Notes in Computer Science, vol. 3203. (Springer, Heidelberg, 2004), pp. 575–585

5. Yi X, Tan CH, SC K, Syed MR: Fast encryption for multimedia. IEEE Trans. Consum. Electron 2001, 47(1):101-107. 10.1109/30.920426

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3