Author:
Sadoudi Said,Tanougast Camel,Azzaz Mohamed Salah,Dandache Abbas
Abstract
Abstract
In this paper, we propose and demonstrate experimentally a new wireless digital encryption hyperchaotic communication system based on radio frequency (RF) communication protocols for secure real-time data or image transmission. A reconfigurable hardware architecture is developed to ensure the interconnection between two field programmable gate array development platforms through XBee RF modules. To ensure the synchronization and encryption of data between the transmitter and the receiver, a feedback masking hyperchaotic synchronization technique based on a dynamic feedback modulation has been implemented to digitally synchronize the encrypter hyperchaotic systems. The obtained experimental results show the relevance of the idea of combining XBee (Zigbee or Wireless Fidelity) protocol, known for its high noise immunity, to secure hyperchaotic communications. In fact, we have recovered the information data or image correctly after real-time encrypted data or image transmission tests at a maximum distance (indoor range) of more than 30 m and with maximum digital modulation rate of 625,000 baud allowing a wireless encrypted video transmission rate of 25 images per second with a spatial resolution of 128 × 128 pixels. The obtained performance of the communication system is suitable for secure data or image transmissions in wireless sensor networks.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Information Systems,Signal Processing
Reference44 articles.
1. Spanos GA, Maples TB: Performance study of a selective encryption scheme for the security of networked, real-time video. In Proceedings of the 4th International Conference on Computer Communications and Networks, Las Vegas, 20-23 Sept 1995. IEEE, Piscataway; 1995:2-10.
2. Yang T: A survey of chaotic secure communication systems. Int. J. Comput. Cogn 2004, 2(2):81-130.
3. Schneier B: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley & Sons, New York; 1996.
4. Zambreno J, Nguyen D, Choudhary AN: Exploring area/delay tradeoffs in an AES FPGA implementation. Field Programmable Logic and Applications, ed. by J Becker, M Platzner, S Vernalde. Proceedings of the 14th International Conference, FPL 2004, Leuven, 30 August-1 September 2004. Lecture Notes in Computer Science, vol. 3203. (Springer, Heidelberg, 2004), pp. 575–585
5. Yi X, Tan CH, SC K, Syed MR: Fast encryption for multimedia. IEEE Trans. Consum. Electron 2001, 47(1):101-107. 10.1109/30.920426
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献