Abstract
Abstract
Background
As no globally accepted dengue vaccines or specific antiviral therapies are currently available, controlling breeding sites of Aedes aegypti is a target to prevent dengue outbreaks. The present study aimed to characterize outdoor artificial breeding sites in urban households using an exhaustive classification system.
Methods
A cross-sectional entomological survey was carried out in Colón city, Entre Ríos, Argentina, using a two-stage stratified sampling design during March and April 2014. The city was stratified given the degree of urbanization of each block, and blocks and households were randomly selected. All outdoor containers with water were inspected, and the presence of immature mosquitoes was recorded. Containers were classified according to physical, functional, and location attributes. Generalized linear mixed models were applied to take into account the aggregated nature of the data (containers in houses and houses in blocks).
Results
Overall, 207 houses were inspected. Out of 522 containers with water, 25% had immatures of Ae. aegypti (7336). In adjusted models, the abundance of immatures was higher in containers with increasing opening surface and volume, without roof cover, exposed to shadow, out of use or with functions related to gardening activities, household chores, water storage, or construction. At block level, immatures abundance was positively associated with the degree of urbanization.
Conclusions
We detected high immatures abundance in containers associated with water utilization. This suggests that containers involved in these activities, whether directly (e.g., water storage) or indirectly (e.g., incomplete water drainage in the last use), are susceptible to present a high immature abundance. Although our results indicate the importance of the type of use over the type of container, we encourage the use of both classification criteria for artificial breeding sites of mosquitoes, mainly because these are complementary. Additionally, generalized linear mixed models allowed us to analyse predictor variables at different scales (container/house/block) and consider the lack of independence between observations. An exhaustive analysis of artificial breeding sites that use this analytical methodology can lead to new information that could help designing more appropriate tools for dengue surveillance and control.
Funder
Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires
Universidad de Buenos Aires
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine
Reference55 articles.
1. Jansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microb Infect. 2010;12:272–9..
2. Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS One. 2018;13:1–21.
3. Carvajal AC. Sociedad Venezolana de Salud Pública Infección por Virus Zika (VZIK). Arbovirosis emergente en las Américas. 2015;31:8–15.
4. Vasconcelos PFC, Powers AM, Hills S. The emergence of Chikungunya and Zika viruses in the Americas. In: Higgs S, Vanlandingham D, Powers A, editors. Chikungunya and Zika viruses:global emerging health threats. New York: Academic; 2018. p. 215–35.
5. Samy AM, Thomas SM, El Wahed AA, Cohoon KP, Peterson AT. Mapping the global geographic potential of Zika virus spread. Mem Inst Oswaldo Cruz. 2016;111:559–60.