Thermal tolerance of mosquito eggs is associated with urban adaptation and human interactions

Author:

Chakraborty Souvik,Zigmond Emily,Shah Sher,Sylla Massamba,Akorli Jewelna,Otoo Sampson,Rose Noah H.,McBride Carolyn S.ORCID,Armbruster Peter A.,Benoit Joshua B.

Abstract

AbstractClimate change is expected to profoundly affect mosquito distributions and their ability to serve as vectors for disease, specifically with the anticipated increase in heat waves. The rising temperature and frequent heat waves can accelerate mosquito life cycles, facilitating higher disease transmission. Conversely, higher temperatures could increase mosquito mortality as a negative consequence. Warmer temperatures are associated with increased human density, suggesting a need for anthropophilic mosquitoes to adapt to be more hardy to heat stress. Mosquito eggs provide an opportunity to study the biological impact of climate warming as this stage is stationary and must tolerate temperatures at the site of female oviposition. As such, egg thermotolerance is critical for survival in a specific habitat. In nature,Aedesmosquitoes exhibit different behavioral phenotypes, where specific populations prefer depositing eggs in tree holes and prefer feeding non-human vertebrates. In contrast, others, particularly human-biting specialists, favor laying eggs in artificial containers near human dwellings. This study examined the thermotolerance of eggs, along with adult stages, forAedes aegyptiandAe. albopictuslineages associated with known ancestry and shifts in their relationship with humans. Mosquitoes collected from areas with higher human population density, displaying increased human preference, and having a human-associated ancestry profile have increased egg viability following high-temperature stress. Unlike eggs, thermal tolerance among adults showed no significant correlation based on the area of collection or human-associated ancestry. This study highlights that the egg stage is likely critical to mosquito survival when associated with humans and needs to be accounted when predicting future mosquito distribution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3