Cryptosporidiosis threat under climate change in China: prediction and validation of habitat suitability and outbreak risk for human-derived Cryptosporidium based on ecological niche models

Author:

Wang Xu,Jiang Yanyan,Wu Weiping,He Xiaozhou,Wang Zhenghuan,Guan Yayi,Xu Ning,Chen Qilu,Shen Yujuan,Cao JianpingORCID

Abstract

Abstract Background Cryptosporidiosis is a zoonotic intestinal infectious disease caused by Cryptosporidium spp., and its transmission is highly influenced by climate factors. In the present study, the potential spatial distribution of Cryptosporidium in China was predicted based on ecological niche models for cryptosporidiosis epidemic risk warning and prevention and control. Methods The applicability of existing Cryptosporidium presence points in ENM analysis was investigated based on data from monitoring sites in 2011–2019. Cryptosporidium occurrence data for China and neighboring countries were extracted and used to construct the ENMs, namely Maxent, Bioclim, Domain, and Garp. Models were evaluated based on Receiver Operating Characteristic curve, Kappa, and True Skill Statistic coefficients. The best model was constructed using Cryptosporidium data and climate variables during 1986‒2010, and used to analyze the effects of climate factors on Cryptosporidium distribution. The climate variables for the period 2011‒2100 were projected to the simulation results to predict the ecological adaptability and potential distribution of Cryptosporidium in future in China. Results The Maxent model (AUC = 0.95, maximum Kappa = 0.91, maximum TSS = 1.00) fit better than the other three models and was thus considered the best ENM for predicting Cryptosporidium habitat suitability. The major suitable habitats for human-derived Cryptosporidium in China were located in some high-population density areas, especially in the middle and lower reaches of the Yangtze River, the lower reaches of the Yellow River, and the Huai and the Pearl River Basins (cloglog value of habitat suitability > 0.9). Under future climate change, non-suitable habitats for Cryptosporidium will shrink, while highly suitable habitats will expand significantly (χ2 = 76.641, P < 0.01; χ2 = 86.836, P < 0.01), and the main changes will likely be concentrated in the northeastern, southwestern, and northwestern regions. Conclusions The Maxent model is applicable in prediction of Cryptosporidium habitat suitability and can achieve excellent simulation results. These results suggest a current high risk of transmission and significant pressure for cryptosporidiosis prevention and control in China. Against a future climate change background, Cryptosporidium may gain more suitable habitats within China. Constructing a national surveillance network could facilitate further elucidation of the epidemiological trends and transmission patterns of cryptosporidiosis, and mitigate the associated epidemic and outbreak risks. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3