Prediction of the potential distribution area of Jacaranda mimosifolia in China under climate change using the MaxEnt model

Author:

Li Xiaomei,Zhang Guowu,Xie Chunping,Qiu Jianhuang,Liu Xuefeng

Abstract

IntroductionJacaranda mimosifolia, native to South America, is a notable ornamental tree widely used in Chinese urban landscaping due to its aesthetic and environmental value. Despite its popularity, the cultivation of J. mimosifolia in China faces challenges, including intermittent failures in various regions. This study assesses the potential distribution of J. mimosifolia in China and its response to climate change, providing insights for its application and promotion.MethodsUsing MaxEnt software, we developed an ecological niche model from 218 distribution records and selected 10 environmental variables to predict the tree’s distribution under various climate scenarios (SSP126, SSP245, SSP370).ResultsOur model demonstrates high predictive accuracy (AUC > 0.90) across scenarios, identifying key factors such as the mean temperature of the coldest quarter (bio11), precipitation of the driest month (bio14), temperature annual range (bio7), and minimum temperature of the coldest month (bio6). Their relative contribution rates were 49.3%, 18.4%, 15.6%, and 2.0%, respectively. The average temperature of the coldest quarter was not lower than 5°C, with the ideal range being 7.38~14.88°C. Currently, J. mimosifolia predominantly thrives in Taiwan, Fujian, Guangdong, Hainan, Guangxi, Yunnan, and to a lesser extent in the Sichuan Basin, southern Guizhou, Tibet, Hunan, Jiangxi, and Zhejiang province, covering a total area of approximately 122.19 × 104 km2. Future predictions indicate that under the SSP126 scenario, the most significant contraction occurs between the 2050s and 2070s, with a total change of −1.08 × 104 km2. Conversely, under the SSP370 scenario, the greatest expansion is observed from the 2030s to the 2050s, amounting to a change of 2.08 × 104 km2. Suitable area expansion is anticipated in most periods and scenarios, except for SSP126 in the 2070s, SSP245 in the 2050s, and SSP370 in the 2030s and 2070s. The distribution center shifts observed include movements northwestward, southwestward, and eastward with distances ranging from 5.12 km to 18.84 km. These shifts are likely driven by global warming, resulting in movements to higher elevations and latitudes.DiscussionThese predictions will provide a solid theoretical foundation for the future application of J. mimosifolia in urban landscaping and serve as a valuable reference for its introduction and cultivation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3