A direct, sensitive and high-throughput genus and species-specific molecular assay for large-scale malaria screening

Author:

Zhao Yaling,Zhao Ye,Sun Yu,Fan Lihua,Wang Duoquan,Wang Heng,Sun Xiaodong,Zheng ZhiORCID

Abstract

Abstract Background Infectious disease diagnostics often requires sensitive molecular assays that identify at both genus and species levels. For large scale screening, such as malaria screening for elimination, diagnostic assay can be a challenge, as both the throughput and cost of the assay must be considered. The requirement of nucleic acid extraction hampers the throughput of most molecular assays. Co-amplification of multiple species or multiplex identification either can result in missed diagnosis or are too costly for large-scale screening. A genus- and species-specific diagnostic assay with simplified procedure, high sensitivity and throughput is still needed. This study aimed to develop a sensitive and high-throughput approach for large-scale infectious disease screening. Methods We developed multi-section Capture and Ligation Probe PCR (mCLIP-PCR) for the direct detection of RNA without extraction and reverse transcription. Multiple tailed sandwich hybridization probes were used to bind at genus- and species-specific sections of the target RNA to cooperatively capture the target onto a 96-well plate. After enzymatic ligation of the bound probes, a single-stranded DNA formed at each section with distinct tail sequence at the ends. They were separately PCR-amplified with primers corresponding to tail sequences for genus or species identification. We applied the method to the active screening of Plasmodium infections of 4,580 asymptomatic dried blood spot samples collected in malaria endemic areas and compared the results with standard qPCR using linear regression. Results With multi-section cooperative capture but separate amplification strategy, we accurately identified genus Plasmodium and species P. falciparum and P. vivax without RNA extraction, with favorable sensitivities among the published reports. In the active screening, our method identified all 53 positive infections including two mixed infections, and two P. vivax infections that were missed by standard qPCR. Conclusions mCLIP-PCR provides a sensitive and high-throughput approach to large-scale infectious disease screening with low cost and labor, making it a valuable tool for malaria elimination in endemic region. Graphical Abstract

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3