Field Evaluation of a Hemozoin-Based Malaria Diagnostic Device in Puerto Lempira, Honduras

Author:

Fontecha GustavoORCID,Escobar DenisORCID,Ortiz Bryan,Pinto Alejandra,Serrano Delmy,Valdivia Hugo O.

Abstract

The diagnosis of malaria in Honduras is based mainly on microscopic observation of the parasite in thick smears or the detection of parasite antigens through rapid diagnostic tests when microscopy is not available. The specific treatment of the disease depends exclusively on the positive result of one of these tests. Given the low sensitivity of conventional methods, new diagnostic approaches are needed. This study evaluates the in-field performance of a device (Gazelle™) based on the detection of hemozoin. This was a double-blind study evaluating symptomatic individuals with suspected malaria in the department of Gracias a Dios, Honduras, using blood samples collected from 2021 to 2022. The diagnostic performance of Gazelle™ was compared with microscopy and nested 18ssr PCR as references. The sensitivity and specificity of Gazelle™ were 59.7% and 98.6%, respectively, while microscopy had a sensitivity of 64.9% and a specificity of 100%. The kappa index between microscopy and Gazelle™ was 0.9216 using microscopy as a reference. Both methods show similar effectiveness and predictive values. No statistical differences were observed between the results of the Gazelle™ compared to light microscopy (p = 0.6831). The turnaround time was shorter for Gazelle™ than for microscopy, but the cost per sample was slightly higher for Gazelle™. Gazelle™ showed more false-negative cases when infections were caused by Plasmodium falciparum compared to P. vivax. Conclusions: The sensitivity and specificity of Gazelle™ are comparable to microscopy. The simplicity and ease of use of the Gazelle™, the ability to run on batteries, and the immediacy of its results make it a valuable tool for malaria detection in the field. However, further development is required to differentiate Plasmodium species, especially in those regions requiring differentiated treatment.

Funder

Global Emerging Infections Surveillance (GEIS) Branch

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3