Forecasting tectonic tremor activity using a renewal process model

Author:

Ide SatoshiORCID,Nomura Shunichi

Abstract

AbstractIn many tectonically active regions of the world, a variety of slow deformation phenomena have been discovered and collectively termed slow earthquakes. Tectonic tremor is the high-frequency component of slow earthquakes and can be analyzed to monitor the overall slow deformation process, both spatially and temporally. Although tectonic tremor activity is complex, it does possess some characteristic patterns, such as spatial segmentation, a quasi-periodic recurrence, migration, and tidal modulation. These features are helpful for forecasting future activity if they are properly modeled in a quantitative manner. Here, we propose a stochastic renewal process to standardize and forecast tectonic tremor activity in the Nankai subduction zone, southwest Japan, using a 12.5-year tremor catalog that is divided into a 10-year estimation period and 2.5-year forecasting period. We group the tremor events into small rectangular 10-km regions and observe that the distribution of inter-event times is nearly bimodal, with the short and long inter-event times representing the characteristic times of nearby tremor interactions and long-term stress accumulation processes, respectively. Therefore, as the probabilistic distribution for the renewal process, we adopt a mixture distribution of log-normal and Brownian passage time distributions for the short and long inter-event times, respectively. The model parameters are successfully estimated for 72% of the entire tremor zone using a maximum likelihood method. This standard model can be used to extract anomalous tremor activity, such as that associated with long-term slow-slip events. We derive a scaling relationship between two characteristic times, the relative plate motion, episodicity of tremor activity, and tremor duration by characterizing the spatial differences in tremor activity. We confirm that the model can forecast the occurrence of the next tremor event at a given reference time for a certain prediction interval. This study can serve as a first step for implementing more complex models to improve the space–time forecasting of slow earthquakes.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3