Along‐Strike Segmentation of Seismic Tremor and Its Relationship With the Hydraulic Structure of the Subduction Fault Zone

Author:

Farge Gaspard12ORCID,Jaupart Claude1ORCID,Frank William B.3ORCID,Shapiro Nikolai M.4ORCID

Affiliation:

1. CNRS Institut de Physique du Globe de Paris Université de Paris Paris France

2. Department of Earth and Planetary Sciences University of California Santa Cruz Santa Cruz CA USA

3. Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

4. CNRS (UMR5275) Institut de Sciences de la Terre Université Grenoble Alpes Grenoble France

Abstract

AbstractAlong the strike of subduction zones, tectonic tremor episodicity is segmented on a geologic scale. Here, we study how this segmentation reflects large‐scale variations of the structure and conditions of the fault interface where tremor is generated. We try to understand which properties of the hydraulic system of the fault allow elementary tremor sources to synchronize, leading to the emergence of long‐period, large‐scale episodic activity. We model tremor sources as being associated with rapid openings of low‐permeability valves in the fault zone, which channels the upward flow of metamorphic fluids. Valve openings cause pressure transients that allow interaction between sources. In such a system, tremor activity is thus controlled by unsteady fluid circulation. Using numerical simulations of fluid flow, we explore the impact of valve spatial distribution and fluid flux on the emergence of large‐scale patterns of tremor activity. We show that when valves are densely distributed and submitted to near‐critical input flux, they synchronize and generate more episodic activity. Based on our model, the most periodic and spatially coherent tremor bursts should thus be emitted from segments densely populated with valves, and therefore of lower permeability than less synchronized segments. The collective activity of their valve population is responsible for fluid‐pressure cycling at the subduction scale. In the tremor zone of Shikoku, Japan, the most temporally clustered segment coincides with a downgoing seamount chain, suggesting that the segmentation of the fault zone permeability, and hence of tremor activity, could be inherited from the topography of the subducting oceanic plate.

Funder

HORIZON EUROPE European Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3