Automated collection of single species of microfossils using a deep learning–micromanipulator system

Author:

Itaki TakuyaORCID,Taira Yosuke,Kuwamori Naoki,Maebayashi Toshinori,Takeshima Satoshi,Toya Kenji

Abstract

AbstractFor geochemical analysis such as stable isotope ratio, radiocarbon dating and minor element analysis for a single species of microfossils, a large number of specimens, is required. Collecting specimens one by one under a microscope requires enormous time and effort. In this study, we developed a device that automates these efforts and can be used without expert knowledge. Microfossils can be accurately classified and identified to taxonomic species level using deep learning, which is one of the learning methods of artificial intelligence (AI), and picked up using a micromanipulator installed in the microscope with an automated motorized X-Y stage. A prototype of the classification model AI-PIC_20181024 showed the ability to classify microfossil species Cycladophora davisiana and Actinomma boreale (radiolarians) with accuracy exceeding 90% at a confidence level > 0.90. Using this method, it is possible to collect a large number of particles with speed and accuracy that cannot be achieved by a human technician. Although this technology can only be used for specific species of microfossils, it greatly reduces the hand work of picking and also enables chemical analysis, such as isotope ratio and minor element analysis, for small microfossil species for which it had been difficult to collect enough specimens. In addition to microfossils, this technology can be applied to other particles, with applications expected in various fields, such as medical, food, horticulture, and materials.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference6 articles.

1. AIST Press Release (2018) New technology utilizing artificial intelligence has been established for accurate identification and sampling of microfossils - enabling high-speed automatic analysis of geological strata, https://www.gsj.jp/en/research/topics/pr20181203.html (Summary of the AIST Press Release on December 3, 2018). Accessed 17 Aug 2019

2. Ijiri A, Yamane M, Ikehara M, Yokoyama Y, Okazaki Y (2014) Online oxygen isotope analysis of sub-milligram quantities of biogenic opal using the inductive high temperature carbon reduction method coupled with continuous-flow isotope ratio mass spectrometry. J Quaternary Sci 29:455–462. https://doi.org/10.1002/jqs.2716

3. Isozaki Y, Yamamoto S, Sakata S, Obayashi H, Hirata T, Obori K, Maebayashi T, Takeshima S, Ebisuzaki T, Maruyama S (2018) High-reliability zircon separation for hunting the oldest material on Earth: an automatic zircon separator with image-processing/microtweezers-manipulating system and double-step dating. Geoscience Frontiers 9:1073–1083

4. Itaki T (2006) Elutriation technique for extracting radiolarian skeletons from sandy sediments and its usefulness for faunal analysis. Radiolaria 24:14–18

5. Mitra R, Marchitto TM, Ge Q, Zhong B, Kanakiya B, Cook MS, Fehrenbacher JS, Ortiz JD, Tripati A, Lobaton E (2019) Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance. Marine Micropaleontol 147: 16-24, doi.org/https://doi.org/10.1016/j.marmicro.2019.01.005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3