Anthropogenic climate change has changed frequency of past flood during 2010-2013

Author:

Hirabayashi YukikoORCID,Alifu Haireti,Yamazaki Dai,Imada Yukiko,Shiogama Hideo,Kimura Yuki

Abstract

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.

Funder

MS & AD InterRisk Research & Consulting, Inc.

Environmental Restoration and Conservation Agency

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Bloeschl G, Hall J, Viglione A, Perdigao RAP, Parajka J, Merz B, Lun D, Arheimer B, Aronica GT, Bilibashi A, Bohac M, Bonacci O, Borga M, Canjevac I, Castellarin A, Chirico GB, Claps P, Frolova N, Ganora D, Gorbachova L, Gul A, Hannaford J, Harrigan S, Kireeva M, Kiss A, Kjeldsen TR, Kohnova S, Koskela JJ, Ledvinka O, Macdonald N, Mavrova-Guirguinova M, Mediero L, Merz R, Molnar P, Montanari A, Murphy C, Osuch M, Ovcharuk V, Radevski I, Salinas JL, Sauquet E, Sraj M, Szolgay J, Volpi E, Wilson D, Zaimi K, Zivkovic N (2019) Changing climate both increases and decreases European river floods. Nature 573:108

2. Dankers R, Arnell NW, Clark DB, Falloon PD, Fekete BM, Gosling SN, Heinke J, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc Natl Acad Sci USA 111(9):3257–3261. https://doi.org/10.1073/pnas.1302078110

3. Do HX, Westra S, Leonard M (2017) A global-scale investigation of trends in annual maximum streamflow. J Hydrol 552:28–43. https://doi.org/10.1016/j.jhydrol.2017.06.015

4. Dottori F, Szewczyk W, Ciscar J-C, Zhao F, Alfieri L, Hirabayashi Y, Bianchi A, Mongelli I, Frieler K, Betts RA, Feyen L (2018) Increased human and economic losses from river flooding with anthropogenic warming. Nat Climate Change 8:781

5. Dunn RJH, Alexander LV, Donat MG, Zhang X, Bador M, Herold N, et al. (2020). Development of an updated global land in situ based data set of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres, 125, e2019JD032263. https://doi.org/10.1029/2019JD032263

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3