Mineralogical and physico-chemical properties of halloysite-bearing slip surface material from a landslide during the 2018 Eastern Iburi earthquake, Hokkaido

Author:

Kameda JunORCID

Abstract

AbstractDestructive landslides were triggered by the 6.7 Mw Eastern Iburi earthquake that struck southern Hokkaido, Japan, on 6 September 2018. Heavy rainfall on 4 September in addition to intermittent rainfall around the Iburi Tobu area saturated and weakened the slope-forming materials (mostly altered volcanoclastic soils), making them susceptible to failure because of the earthquake’s strong ground motion. Most of the shallow landslides exhibited long runouts along gentle hill slopes, with characteristic halloysite-bearing slip surface at the base of the volcanic soils. This study investigated the mineralogical and physico-chemical properties of the slip surface material with the aim of understanding weakening and post-failure behaviors during the landslides. Halloysite in the slip surface had irregular-to-hollow-spherical morphology with higher mesopore volumes than tubular halloysite, which is related to a high capacity for water retention after rainfall. To reproduce possible chemical changes in the slip surface during rainfall, the sample was immersed in varying amounts of rainwater; solution pH increased and ionic strength decreased with increasing water content. These findings, alongside electrophoretic analysis, suggest that rainwater infiltration could have increased the absolute zeta potential value of the slip surface material. It is suggested that rainfall before the earthquake enhanced the colloidal stability of halloysite particles within the slip surface, owing to an increase in electrostatic repulsion. This decreased the material’s cohesive strength, which might have led to destabilization of the slope during ground shaking generated by the earthquake, and subsequent high-mobility flow after failure.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Askenasy PE, Dixon JB, McKee TR (1973) Spheroidal Halloysite in a Guatemalan Soil. Soil Sci Soc Am Proc 37(5):799–803. https://doi.org/10.2136/sssaj1973.03615995003700050045x

2. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73:373–380

3. Brigatti MF, Galan E, Theng BKG (2006) Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Amsterdam, pp 19–86. https://doi.org/10.1016/S1572-4352(05)01002-0

4. Chigira M, Nakasuji A, Fujiwara S, Sakagami M (2012) Catastrophic landslides of pyroclastics induced by the 2011 off the Pacific Coast of Tohoku Earthquake. pp 139–147 in: Earthquake-induced landslides, Proc. Int. Symp. Earthquake-Induced Landslides, Kiryu, Japan, Springer

5. Chigira M, Tajika J, Ishimaru S (2019) Landslides of pyroclastic fall deposits induced by the 2018 Eastern Iburi Earthquake with special reference to the weathering of pyroclastics. DPRI Annuals 62:348–356

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3