Abstract
AbstractDestructive landslides were triggered by the 6.7 Mw Eastern Iburi earthquake that struck southern Hokkaido, Japan, on 6 September 2018. Heavy rainfall on 4 September in addition to intermittent rainfall around the Iburi Tobu area saturated and weakened the slope-forming materials (mostly altered volcanoclastic soils), making them susceptible to failure because of the earthquake’s strong ground motion. Most of the shallow landslides exhibited long runouts along gentle hill slopes, with characteristic halloysite-bearing slip surface at the base of the volcanic soils. This study investigated the mineralogical and physico-chemical properties of the slip surface material with the aim of understanding weakening and post-failure behaviors during the landslides. Halloysite in the slip surface had irregular-to-hollow-spherical morphology with higher mesopore volumes than tubular halloysite, which is related to a high capacity for water retention after rainfall. To reproduce possible chemical changes in the slip surface during rainfall, the sample was immersed in varying amounts of rainwater; solution pH increased and ionic strength decreased with increasing water content. These findings, alongside electrophoretic analysis, suggest that rainwater infiltration could have increased the absolute zeta potential value of the slip surface material. It is suggested that rainfall before the earthquake enhanced the colloidal stability of halloysite particles within the slip surface, owing to an increase in electrostatic repulsion. This decreased the material’s cohesive strength, which might have led to destabilization of the slope during ground shaking generated by the earthquake, and subsequent high-mobility flow after failure.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference55 articles.
1. Askenasy PE, Dixon JB, McKee TR (1973) Spheroidal Halloysite in a Guatemalan Soil. Soil Sci Soc Am Proc 37(5):799–803. https://doi.org/10.2136/sssaj1973.03615995003700050045x
2. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73:373–380
3. Brigatti MF, Galan E, Theng BKG (2006) Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Amsterdam, pp 19–86. https://doi.org/10.1016/S1572-4352(05)01002-0
4. Chigira M, Nakasuji A, Fujiwara S, Sakagami M (2012) Catastrophic landslides of pyroclastics induced by the 2011 off the Pacific Coast of Tohoku Earthquake. pp 139–147 in: Earthquake-induced landslides, Proc. Int. Symp. Earthquake-Induced Landslides, Kiryu, Japan, Springer
5. Chigira M, Tajika J, Ishimaru S (2019) Landslides of pyroclastic fall deposits induced by the 2018 Eastern Iburi Earthquake with special reference to the weathering of pyroclastics. DPRI Annuals 62:348–356
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献