Affiliation:
1. Department of Earth and Planetary Sciences Graduate School of Science Hokkaido University Sapporo Japan
2. Department of Earth and Planetary Sciences, Faculty of Science Hokkaido University Sapporo Japan
Abstract
AbstractThe frontal part of the Japan Trench plate‐boundary fault is enriched in low‐strength smectite, and this material characteristic is thought to be a factor for the large fault slip during the 2011 Mw 9.0 Tohoku‐oki earthquake. In this study, we evaluated the surface physicochemical properties of the particles that constitute the fault zone and examined their effect on the rheological properties of the fault. Measurements of the zeta potential, surface free energy and pore size distribution indicate that the interparticle interaction in the in situ state is very weak. This means that the viscous resistance is low, which may have contributed to the large fault slip during the earthquake. The interparticle distance appears be longer than the energetically stable state, which may reflect a transitory state after the earthquake. Changes in microscopic interparticle interactions during coseismic and interseismic periods may influence the rheological behaviors of the Japan Trench plate‐boundary fault.
Funder
Japan Society for the Promotion of Science
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献