Scalability of future climate changes across Japan examined with large-ensemble simulations at + 1.5 K, +2 K, and + 4 K global warming levels

Author:

Nosaka MasayaORCID,Ishii Masayoshi,Shiogama Hideo,Mizuta Ryo,Murata Akihiko,Kawase Hiroaki,Sasaki Hidetaka

Abstract

AbstractLarge-ensemble climate experiments were performed to simulate future climates for a + 1.5 K rise in the global mean surface air temperatures relative to preindustrial levels as a subset of the database for Policy Decision making for future climate change (d4PDF), using the Non-Hydrostatic Regional Climate Model (NHRCM) with 20 km grid spacing. Along with present climate, + 2 K and + 4 K experimental outputs from the d4PDF already available, we investigated responses of surface air temperature (SAT) and precipitation on regional scales over Japan to global warming. The reproducibility of the present climate experiment is satisfactory to investigate future changes in the Japanese climate, and dynamical downscaling from the global to the regional climate states improves the frequency of heavy daily precipitation. In the future, SAT over Japan rises linearly with and faster than the global mean SAT. The meridional contrast of SAT rises becomes more pronounced as global warming progresses. Winter precipitation decreases/increases linearly in the western/eastern Japan, reflected by weakening of future winter monsoons. Annual maximum daily precipitation (R1d) shows a closely linear increase with the global SAT rise, but annual precipitation is mostly unchanged. The global mean SAT change from + 1.5 to + 2 K enhances R1d by 2.7% over the Japanese Islands, although the increase of R1d varies by regions. The increase in R1d is 5% in northern Japan, where the SAT increases are greater than those in other regions.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3