Sulfate runoff processes during rainfall events in a small forested catchment on the sea of Japan side recovering from acidification under climate change

Author:

Yotsuyanagi Hiroki1,Morohashi Masayuki1,Takahashi Masaaki2,Ohizumi Tsuyoshi1,Inomata Yayoi3,Yabusaki Shiho4ORCID,Tayasu Ichiro4ORCID,Okochi Hiroshi5,Sase Hiroyuki16ORCID

Affiliation:

1. Asia Center for Air Pollution Research Niigata Japan

2. Niigata Prefectural Government Niigata Japan

3. Kanazawa University Kanazawa Japan

4. Research Institute for Humanity and Nature Kyoto Japan

5. Waseda University Tokyo Japan

6. Niigata University Niigata Japan

Abstract

AbstractChanges in rainfall patterns due to climate change may accelerate the runoff of sulfate (SO42−), which is anthropogenically emitted and deposited as an air pollutant, cycled in forest ecosystems, and partly accumulated in forest soils. A forested catchment on the Sea of Japan side in central Japan is significantly affected by transboundary air pollution from the Asian continent due to northwesterly seasonal winds in winter. In this study, intensive 24‐h observations were conducted every hour eight times from 2019 to 2020 to clarify changes in stream water quality and runoff processes during rainfall events. The pH, electrical conductivity, and SO42− concentration in stream water decreased with increasing hourly average discharge rate (L sec−1). The SO42− concentration was negatively correlated with discharge rate. Hydrograph separations using the water isotopic parameter (deuterium excess, d‐excess = δ2H – 8 × δ18O) showed that most of the stream flow during the rain events was derived from pre‐storm water. A significant negative correlation between the d‐excess and stream water discharge was found for all six events where the water isotope analysis was applied. However, the S isotope ratio (δ34S) in stream water was not correlated with discharge rate during rainfall events and was obviously different (>1.5‰) from rainwater δ34S in the same month. This suggests that rainwater SO42− during rainfall events did not directly flow to the stream but was retained in the forest ecosystem. The isotopically well homogenized internal SO42− appeared to be mainly released into the stream during rainfall events. Future climate change may further accelerate SO42− runoff from forest catchments and disrupt material cycles in the ecosystem if warming causes more intense rainfall.

Funder

Japan Society for the Promotion of Science

Research Institute for Humanity and Nature

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3