Design framework for a seamless smart glove using a digital knitting system
-
Published:2021-02-05
Issue:1
Volume:8
Page:
-
ISSN:2198-0802
-
Container-title:Fashion and Textiles
-
language:en
-
Short-container-title:Fash Text
Author:
Song Yewon, Lee Seulah, Choi Yuna, Han Sora, Won Hyuna, Sung Tae-Hyun, Choi Youngjin, Bae JihyunORCID
Abstract
AbstractThe wearable electronics integrated with textile-based devices is a promising strategy to meet the requirements of human comfort as well as electrical performances. This research presents a design and development framework for a seamless glove sensor system using digital knitting fabrication. Based on the performance requirements of glove sensors for controlling a prosthetic hand, desirable design components include electrical conductivity, comfort, formfit, electrical sensitivity, and customizable design. These attributes are determined and achieved by applying appropriate materials and fabrication technologies. In this study, a digital knitting CAD/CAM system is utilized to meet the desired performance criteria, and two prototypes of the seamless glove sensor systems are successfully developed for the detection of both human and robotic finger motions. This digital knitting system will provide considerable potential for customized design development as well as a sustainable production process. This structured, systematic approach could be adapted in the future development of wearable electronic textile systems.
Funder
National Research Foundation of Korea Hanyang University
Publisher
Springer Science and Business Media LLC
Subject
Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology
Reference25 articles.
1. Azim, A. Y. M. A., Sowrov, K., Ahmed, M., Hassan, H. M. R. U., & Faruque, Md A A. (2014). Effect of elastane on single jersey knit fabric properties-physical & dimensional properties. International Journal of Textile Science, 3(1), 12–16. https://doi.org/10.5923/j.textile.20140301.03. 2. Bae, J., Lee, J., Kim, S., Ha, J., Lee, B. S., Park, Y., et al. (2014). Flutter-driven triboelectrification for harvesting wind energy. Nature Communications. https://doi.org/10.1038/ncomms5929. 3. Choong, C. L., Shim, M. B., Lee, B. S., Jeon, S., Ko, D. S., Kang, T. H., et al. (2014). Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials, 26(21), 3451–3458. https://doi.org/10.1002/adma.201305182. 4. Fan, W., He, Q., Meng, K., Tan, X., Zhou, Z., Zhang, G., et al. (2020). Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science Advances, 6(11), eaay2840. https://doi.org/10.1126/sciadv.aay2840. 5. He, T., Sun, Z., Shi, Q., Zhu, M., Vera Anaya, D., Xu, M., et al. (2019). Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy, 58, 641–651. https://doi.org/10.1016/j.nanoen.2019.01.091.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|