A review on the recent developments in design and integration of electromyography textile electrodes for biosignal monitoring

Author:

Etana Bulcha Belay12ORCID,Malengier Benny1ORCID,Timothy Kwa3,Wojciech Sitek4,Krishnamoorthy Janarthanan5,Van Langenhove Lieva1

Affiliation:

1. Department of Materials, Textiles and Chemical Engineering, Ghent University, Belgium

2. Jimma Institute of Technology (JiT), School of Materials Science and Engineering, Jimma University, Jimma, Ethiopia

3. Minneapolis VA Medical Center, Minneapolis, MN, USA

4. Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies, Silesian University of Technology, Gliwice, Poland

5. Biomedical Engineering, Jimma University, Jimma Institute of Technology, Jimma, Ethiopia

Abstract

Due to recent developments in wearable sensor technology, textile electrodes are routinely being employed in electromyography (EMG) for continuous monitoring of the biosignals from the muscles. However, the performance of such smart textile-based health monitoring devices depends on several factors such as, the sensitivity (impedance), durability (reusable/washable), users' comfort ability, integrability, and automatability. In this article we review the characteristics and the performance of the EMG textile electrodes, in the context of functional textile materials, smart textile materials, and smart textile systems for biosignals monitoring. The functional textile materials are confined to signal transmission alone, whereas, the smart textile materials include signal transducers and sensors. The more advanced smart textile systems include signal conditioning circuits with displays. Nowadays, textile-based sensors embedded in garments are becoming a part of users' normal life, in particular, the textile systems that continuously monitor the vital physiological signals from muscles are being sought after in healthcare settings.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3