Automatic Segmentation and 3D Printing of A-shaped Manikins using a Bounding Box and Body-feature Points
-
Published:2021-03-25
Issue:1
Volume:8
Page:
-
ISSN:2198-0802
-
Container-title:Fashion and Textiles
-
language:en
-
Short-container-title:Fash Text
Author:
Jung Jin Young, Chee Seonkoo, Sul In HwanORCID
Abstract
AbstractA novel algorithm for 3D-printing technology was proposed to generate large-scale objects, especially A-shaped manikins or 3D human body scan data. Most of the conventional 3D printers have a finite printing volume, and it is the users’ work to convert the target object into a printable size. In this study, an automatic three-step segmentation strategy was applied to the raw manikin mesh data until the final pieces had a smaller size than the 3D printer’s maximum printing volume, which is generally called “beam length”. Human body feature point information was adopted for fashion and textile researchers to easily specify the desired cutting positions. A simple bounding box, especially orienting bounding box, and modified Boolean operator were proposed to extract the specified segments with computational stability. The proposed method was applied to graphically synthesized manikin data, and 1/8, 1/4, and 1/2 scale manikins were successfully printed, minimizing the amount of support structure.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology
Reference36 articles.
1. Bos, F., Wolfs, R., Ahmed, Z., & Salet, T. (2016). Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 11(3), 209–225. https://doi.org/10.1080/17452759.2016.1209867 2. Boström, O., Fredriksson, R., Håland, Y., Jakobsson, L., Krafft, M., Lövsund, P., Muser, M. H., & Svensson, M. Y. (2000). Comparison of car seats in low speed rear-end impacts using the BioRID dummy and the new neck injury criterion (NIC). Accident Analysis & Prevention, 32(2), 321–328. https://doi.org/10.1016/s0001-4575(99)00105-0 3. Chen, X., Liu, X., Ouyang, M., Chen, J., Taiwo, O., Xia, Y., Childs, P. R., Brandon, N. P., & Wu, B. (2019). Multi-metal 4D printing with a desktop electrochemical 3D printer. Scientific reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40774-5 4. Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q.-X., Benes, B., Cohen-Or, D., & Chen, B. (2015). Dapper: decompose-and-pack for 3D printing. ACM Transactions on Graphics, 34(6), 213:211–213:212. https://doi.org/https://doi.org/10.1145/2816795.2818087. 5. Crump, S. S. (1992). Apparatus and method for creating three-dimensional objects (US Patent No. 5,121,329). U. S. Patent and Trademark Office.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|