Characterization of electrospun Aronia melanocarpa fruit extracts loaded polyurethane nanoweb

Author:

Woo Ho Woo,Lee Jung SoonORCID

Abstract

AbstractIn this study, Aronia melanocarpa fruit was extracted with ethanol, distilled water (pH 7), acidified distilled waters (at pH 5 and 3) as the solvent, the total polyphenol content, total flavonoid content, and anti-oxidant activity of the extracts were analyzed. Then, we investigated the possibility of producing nanofibers by the electrospinning process by adding the Aronia melanocarpa fruit extract (AE), which showed the greatest antioxidant effect, to a polyurethane (PU). The electrospinning method used a PU concentration of 10 wt% and 12 wt%, an applied voltage of 10 kV, a tip-to-collector distance of 15 cm, and flowrate of 0.3 mL/h. The analysis confirmed that the total polyphenol, total flavonoid content, and antioxidant activity of the distilled water extract were the highest at a pH value of 3. As the AE was added and its concentration increased, both the viscosity and the diameter of the nanofibers also increased. At PU concentrations of 10%, 12%, relatively uniform nanofibers without beads were prepared by adding 2 to 3 wt% and 0.5 to 2 wt% of the AE, respectively. At the above conditions, the diameters of the nanofibers that were produced were in the range of 227 to 420 nm, so it was evident that PU/AE nanofibers with various diameters could be prepared by controlling the concentration of PU and AE. In addition, the FT-IR, XRD, and DSC analyses confirmed that hydrogen bonding occurred between the AE and the PU. Thus, the resulting crystallinity, melting point, and reduction in the heat capacity confirmed that the AE was well mixed with the PU polymer.

Funder

National Research Foundation of Kore

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3