Efficient pulmonary nodules classification using radiomics and different artificial intelligence strategies

Author:

Saied Mohamed,Raafat Mourad,Yehia Sherif,Khalil Magdy M.ORCID

Abstract

Abstract Objectives This study aimed to explore and develop artificial intelligence approaches for efficient classification of pulmonary nodules based on CT scans. Materials and methods A number of 1007 nodules were obtained from 551 patients of LIDC-IDRI dataset. All nodules were cropped into 64 × 64 PNG images , and preprocessing was carried out to clean the image from surrounding non-nodular structure. In machine learning method, texture Haralick and local binary pattern features were extracted. Four features were selected using principal component analysis (PCA) algorithm before running classifiers. In deep learning, a simple CNN model was constructed and transfer learning was applied using VGG-16 and VGG-19, DenseNet-121 and DenseNet-169 and ResNet as pre-trained models with fine tuning. Results In statistical machine learning method, the optimal AUROC was 0.885 ± 0.024 with random forest classifier and the best accuracy was 0.819 ± 0.016 with support vector machine. In deep learning, the best accuracy reached 90.39% with DenseNet-121 model and the best AUROC was 96.0%, 95.39% and 95.69% with simple CNN, VGG-16 and VGG-19, respectively. The best sensitivity reached 90.32% using DenseNet-169 and the best specificity attained was 93.65% when applying the DenseNet-121 and ResNet-152V2. Conclusion Deep learning methods with transfer learning showed several benefits over statistical learning in terms of nodule prediction performance and saving efforts and time in training large datasets. SVM and DenseNet-121 showed the best performance when compared with their counterparts. There is still more room for improvement, especially when more data can be trained and lesion volume is represented in 3D. Clinical relevance statement Machine learning methods offer unique opportunities and open new venues in clinical diagnosis of lung cancer. The deep learning approach has been more accurate than statistical learning methods. SVM and DenseNet-121 showed superior performance in pulmonary nodule classification. Graphical abstract

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference28 articles.

1. World Health Organization (2020) International Agency for research on cancer. Globocan: Lung Cancer. International Agency for Research on Cancer. http://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf. Accessed 1 Oct 2022

2. Lung Cancer Fact Sheet (n.d.) Retrieved from http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html. Accessed 25 Sept 2022

3. Liu H, Chen R, Tong C, Liang X-W (2021) MRI versus CT for the detection of pulmonary nodules: a meta-analysis. Medicine (Baltimore) 100(42):e27270. https://doi.org/10.1097/MD.0000000000027270

4. The use of radiomics and machine learning for lung nodule classification. Andrei Teleron Capstone Project. https://github.com/Niyamas/SVM-lung-nodule-classification

5. van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJ (2022) How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol 52:2087–2093

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3