Advancing Pulmonary Nodule Diagnosis by Integrating Engineered and Deep Features Extracted from CT Scans

Author:

Safta Wiem1,Shaffie Ahmed2ORCID

Affiliation:

1. Computer Science and Engineering Department, University of Louisville, Louisville, KY 40208, USA

2. Mathematics and Computer Science Department, Louisiana State University of Alexandria, Alexandria, LA 71302, USA

Abstract

Enhancing lung cancer diagnosis requires precise early detection methods. This study introduces an automated diagnostic system leveraging computed tomography (CT) scans for early lung cancer identification. The main approach is the integration of three distinct feature analyses: the novel 3D-Local Octal Pattern (LOP) descriptor for texture analysis, the 3D-Convolutional Neural Network (CNN) for extracting deep features, and geometric feature analysis to characterize pulmonary nodules. The 3D-LOP method innovatively captures nodule texture by analyzing the orientation and magnitude of voxel relationships, enabling the distinction of discriminative features. Simultaneously, the 3D-CNN extracts deep features from raw CT scans, providing comprehensive insights into nodule characteristics. Geometric features and assessing nodule shape further augment this analysis, offering a holistic view of potential malignancies. By amalgamating these analyses, our system employs a probability-based linear classifier to deliver a final diagnostic output. Validated on 822 Lung Image Database Consortium (LIDC) cases, the system’s performance was exceptional, with measures of 97.84%, 98.11%, 94.73%, and 0.9912 for accuracy, sensitivity, specificity, and Area Under the ROC Curve (AUC), respectively. These results highlight the system’s potential as a significant advancement in clinical diagnostics, offering a reliable, non-invasive tool for lung cancer detection that promises to improve patient outcomes through early diagnosis.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3