The molecular mechanism of acute liver injury and inflammatory response induced by Concanavalin A

Author:

Liu Xiaoxiao,Yu Ting,Hu Yuzhu,Zhang Longzhen,Zheng Junnian,Wei XiaweiORCID

Abstract

AbstractAcute liver injury is a common but urgent clinical condition, and its underlying mechanism remains to be further elucidated. Concanavalin A (ConA)-induced liver injury was investigated in the study. Different from the caspase-dependent cell apoptosis in lipopolysaccharide/D-aminogalactose (LPS/D-GalN) induced liver injury, ConA-induced hepatocyte death was independent on caspase. Increased hepatocytic expressions of mixed lineage kinase domain like (MLKL) and receptor-interacting protein kinase 1 (RIPK1), and higher serum concentration of tumor necrosis factor-α (TNF-α) were noticed in mice with ConA-induced liver injury. Inhibition of RIPK1 protein or deletion of MLKL gene could significantly attenuate the acute liver injury and improve mice survival. Besides, the ConA treatment induced severe hepatic inflammation in wide type (WT) mice in comparison with Mlkl−/− mice, suggesting the RIPK1-MLKL-mediated hepatocellular necroptosis might participate in the process of liver injury. Moreover, mitochondrial damage associated molecular patterns (DAMPs) were subsequently released after the hepatocyte death, and further activated the p38 mitogen-activated protein kinase (MAPK) pathway, which could be reduced by deletion or inhibition of Toll-like receptor 9 (TLR9). Taken together, our research revealed that ConA-induced acute liver injury was closely related to TNF-α-mediated cell necroptosis, and inhibiting RIPK1 or deleting MLKL gene could alleviate liver injury in mice. The mitochondrial DNA released by dead hepatocytes further activated neutrophils through TLR9, thus resulting in the exacerbation of liver injury.

Funder

This work was supported by the 2018 Doctoral Project for Innovation and Entrepreneurship of Jiangsu Province and the Natural Science Foundation Youth Project of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3