Author:
Zhang Qiongwen,Yu Ting,Tan Huaicheng,Shi Huashan
Abstract
Abstract
Background
The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury.
Methods
We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-β were measured by ELISA assay and followed by being blocked with specific antibodies.
Results
The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G−Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-β. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs).
Conclusions
The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Sichuan Province
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40–55.
2. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60–6.
3. Chanda S, Mangipudy RS, Warbritton A, Bucci TJ, Mehendale HM. Stimulated hepatic tissue repair underlies heteroprotection by thioacetamide against acetaminophen-induced lethality. Hepatology. 1995;21(2):477–86.
4. Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2008;47(2):729–36.
5. Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol. 2021;22(9):608–24.