Streptococcal Receptor Polysaccharides: Recognition Molecules for Oral Biofilm Formation

Author:

Yoshida Yasuo,Palmer Robert J,Yang Jinghua,Kolenbrander Paul E,Cisar John O

Abstract

Abstract Background Strains of viridans group streptococci that initiate colonization of the human tooth surface typically coaggregate with each other and with Actinomyces naeslundii, another member of the developing biofilm community. These interactions generally involve adhesin-mediated recognition of streptococcal receptor polysaccharides (RPS). The objective of our studies is to understand the role of these polysaccharides in oral biofilm development. Methods Different structural types of RPS have been characterized by their reactions with specific antibodies and lectin-like adhesins. Streptococcal gene clusters for RPS biosynthesis were identified, sequenced, characterized and compared. RPS-producing bacteria were detected in biofilm samples using specific antibodies and gene probes. Results Six different types of RPS have been identified from representative viridans group streptococci that coaggregate with A. naeslundii. Each type is composed of a different hexa- or heptasaccharide repeating unit, the structures of which contain host-like motifs, either GalNAcβ1-3Gal or Galβ1-3GalNAc. These motifs account for RPS-mediated recognition, whereas other features of these polysaccharides are more closely associated with RPS antigenicity. The RPS-dependent interaction of S. oralis with A. naeslundii promotes growth of these bacteria and biofilm formation in flowing saliva. Type specific differences in RPS production have been noted among the resident streptococcal floras of different individuals, raising the possibility of RPS-based differences in the composition of oral biofilm communities. Conclusion The structural, functional and molecular properties of streptococcal RPS support a recognition role of these cell surface molecules in oral biofilm formation.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Reference26 articles.

1. Nyvad B, Kilian M: Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res. 1987, 95 (5): 369-380.

2. Gibbons RJ: Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res. 1989, 68 (5): 750-760.

3. Nyvad B, Fejerskov O: Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res. 1987, 95 (4): 287-296.

4. Nyvad B, Kilian M: Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 1990, 24 (4): 267-272.

5. de Soet JJ, Nyvad B, Kilian M: Strain-related acid production by oral streptococci. Caries Res. 2000, 34 (6): 486-490. 10.1159/000016628.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3