Abstract
Abstract
Background
Alzheimer’s disease (AD), cardiovascular disease (CVD), and diabetes are some of the most common causes of morbidity and mortality among the aging populations and cause a heavy burden on the worldwide healthcare system. In this review, we briefly highlighted cellular inflammation-based pathways of diabetes mellitus and CVD through receptor for advanced glycation end products AGEs or RAGE leading to Alzheimer’s disease and interrelation between these vascular and metabolic disorders. The articles were retrieved from Google Scholar, Science Direct, and PubMed databases using the following terms: Alzheimer’s; AGEs; RAGE; RAGE in Alzheimer’s; AGEs in Alzheimer’s; RAGE in diabetes; RAGE related pathways of CVD; RAGE in hypertension; RAGE and RAS system; RAGE and oxidative stress.
Main body of the abstract
AD is a neurodegenerative disease characterized by cognitive dysfunction and neuronal cell death. Vascular complications like hypertension, coronary artery disease, and atherosclerosis as well as metabolic syndromes like obesity and diabetes are related to the pathophysiology of AD. RAGE plays significant role in the onset and progression of AD. Amyloid plaques and neurofibrillary tangles (NFT) are two main markers of AD that regulates via RAGE and other RAGE/ligands interactions which also induces oxidative stress and a cascade of other cellular inflammation pathways leading to AD. Though AD and diabetes are two different disorders but may be inter-linked by AGEs and RAGE. In long-term hyperglycemia, upregulated AGEs interacts with RAGE and produces reactive oxygen species which induces further inflammation and vascular complications. Aging, hypercholesterolemia, atherosclerosis, hypertension, obesity, and inflammation are some of the main risk factors for both diabetes and dementia. Chronic hypertension and coronary artery disease disrupt the functions of the blood-brain barrier and are responsible for the accumulation of senile plaques and NFTs.
Short conclusion
RAGE plays a role in the etiology of Aβ and tau hyperphosphorylation, both of which contribute to cognitive impairment. So far, targeting RAGE may provide a potential sight to develop therapies against some metabolic disorders.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献