Author:
Viñuelas José,Kaneko Gaël,Coulon Antoine,Vallin Elodie,Morin Valérie,Mejia-Pous Camila,Kupiec Jean-Jacques,Beslon Guillaume,Gandrillon Olivier
Abstract
Abstract
Background
A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells.
Results
For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability.
Conclusions
In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference86 articles.
1. Novick A, Weiner MC: Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA. 1957, 43: 553-566. 10.1073/pnas.43.7.553.
2. Spudich JL, Koshland DE: Non-genetic individuality: chance in the single cell. Nature. 1976, 262: 467-471. 10.1038/262467a0.
3. Kupiec JJ: A probabilistic theory for cell differentiation, embryonic mortality and DNA C-value paradox. Speculations in Science and Technology. 1983, 6: 471-478.
4. Elowitz MB, Levine AJ, Siggia ED, Swain PS: Stochastic gene expression in a single cell. Science. 2002, 297: 1183-1186. 10.1126/science.1070919.
5. Levsky JM, Shenoy SM, Pezo RC, Singer RH: Single-cell gene expression profiling. Science. 2002, 297: 836-840. 10.1126/science.1072241.
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献