Detection of genes with differential expression dispersion unravels the role of autophagy in cancer progression

Author:

Le Priol ChristopheORCID,Azencott Chloé-Agathe,Gidrol Xavier

Abstract

The majority of gene expression studies focus on the search for genes whose mean expression is different between two or more populations of samples in the so-called “differential expression analysis” approach. However, a difference in variance in gene expression may also be biologically and physiologically relevant. In the classical statistical model used to analyze RNA-sequencing (RNA-seq) data, the dispersion, which defines the variance, is only considered as a parameter to be estimated prior to identifying a difference in mean expression between conditions of interest. Here, we propose to evaluate four recently published methods, which detect differences in both the mean and dispersion in RNA-seq data. We thoroughly investigated the performance of these methods on simulated datasets and characterized parameter settings to reliably detect genes with a differential expression dispersion. We applied these methods to The Cancer Genome Atlas datasets. Interestingly, among the genes with an increased expression dispersion in tumors and without a change in mean expression, we identified some key cellular functions, most of which were related to catabolism and were overrepresented in most of the analyzed cancers. In particular, our results highlight autophagy, whose role in cancerogenesis is context-dependent, illustrating the potential of the differential dispersion approach to gain new insights into biological processes and to discover new biomarkers.

Funder

Commissariat à l’Énergie Atomique et aux Énergies Alternatives

Université Grenoble Alpes

MINES ParisTech: Mines Paris - PSL

Institut national de la santé et de la recherche médicale

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3