Author:
Pacak Christina A,Conlon Thomas,Mah Cathryn S,Byrne Barry J
Abstract
Abstract
The purpose of this study was to assess the behavior of pseudotyped recombinant adeno-associated virus type 1 (rAAV2/1) vector genomes in dystrophic skeletal muscle. A comparison was made between a therapeutic vector and a reporter vector by injecting the hindlimb in a mouse model of Limb Girdle Muscular Dystrophy Type 2D (LGMD-2D) prior to disease onset. We hypothesized that the therapeutic vector would establish long-term persistence through prevention of myofiber turnover. In contrast, the reporter vector genome copy number would diminish over time due to disease-associated muscle degradation.
One day old alpha sarcoglycan knockout mice (sgca
-/-) were injected with 1 × 1011 vector genomes of rAAV2/1-tMCK-sgca in one hindlimb and the same dose of rAAV2/1-tMCK-LacZ in the contra lateral hindlimb. Newborn mice are tolerant of the foreign transgene allowing for long-term expression of both the marker and the therapeutic gene in the null background. At 2 time-points following vector administration, hindlimb muscles were harvested and analyzed for LacZ or sarcoglycan expression. Our data demonstrate prolonged vector genome persistence in skeletal muscle from the hindlimbs injected with the therapeutic transgene as compared to hindlimbs injected with the reporter gene. We observed loss of vector genomes in skeletal muscles that were there were not protected by the benefits of therapeutic gene transfer. In comparison, the therapeutic vector expressing sarcoglycan led to reduction or elimination of myofiber loss. Mitigating the membrane instability inherent in dystrophic muscle was able to prolong the life of individual myofibers.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Medicine,Immunology,Immunology and Allergy,Biotechnology
Reference11 articles.
1. Moore SA, Shilling CJ, Westra S, Wall C, Wicklund MP, Stolle C, Brown CA, Michele DE, Piccolo F, Winder TL, et al: Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol. 2006, 65: 995-1003. 10.1097/01.jnen.0000235854.77716.6c.
2. Kang PBKL: Chapter 216: The Muscular Dystrophies. The Online Metabolic and Molecular Bases of Inherited Disease. Edited by: Scriver CRBA, Valle D, Sly WS. 2007, McGraw-Hill, 8
3. Eymard B, Romero NB, Leturcq F, Piccolo F, Carrie A, Jeanpierre M, Collin H, Deburgrave N, Azibi K, Chaouch M, et al: Primary adhalinopathy (alpha-sarcoglycanopathy): clinical, pathologic, and genetic correlation in 20 patients with autosomal recessive muscular dystrophy. Neurology. 1997, 48: 1227-1234.
4. Pacak CA, Walter GA, Gaidosh G, Bryant N, Lewis MA, Germain S, Mah CS, Campbell KP, Byrne BJ: Long-term Skeletal Muscle Protection After Gene Transfer in a Mouse Model of LGMD-2D. Mol Ther. 2007, 15: 1775-1781. 10.1038/sj.mt.6300246.
5. Fougerousse F, Bartoli M, Poupiot J, Arandel L, Durand M, Guerchet N, Gicquel E, Danos O, Richard I: Phenotypic Correction of alpha-Sarcoglycan Deficiency by Intra-arterial Injection of a Muscle-specific Serotype 1 rAAV Vector. Mol Ther. 2007, 15: 53-61. 10.1038/sj.mt.6300022.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献