Anticipating manic and depressive transitions in patients with bipolar disorder using early warning signals

Author:

Bos Fionneke M.ORCID,Schreuder Marieke J.,George Sandip V.,Doornbos Bennard,Bruggeman Richard,van der Krieke Lian,Haarman Bartholomeus C. M.,Wichers Marieke,Snippe Evelien

Abstract

Abstract Background In bipolar disorder treatment, accurate episode prediction is paramount but remains difficult. A novel idiographic approach to prediction is to monitor generic early warning signals (EWS), which may manifest in symptom dynamics. EWS could thus form personalized alerts in clinical care. The present study investigated whether EWS can anticipate manic and depressive transitions in individual patients with bipolar disorder. Methods Twenty bipolar type I/II patients (with ≥ 2 episodes in the previous year) participated in ecological momentary assessment (EMA), completing five questionnaires a day for four months (Mean = 491 observations per person). Transitions were determined by weekly completed questionnaires on depressive (Quick Inventory for Depressive Symptomatology Self-Report) and manic (Altman Self-Rating Mania Scale) symptoms. EWS (rises in autocorrelation at lag-1 and standard deviation) were calculated in moving windows over 17 affective and symptomatic EMA states. Positive and negative predictive values were calculated to determine clinical utility. Results Eleven patients reported 1–2 transitions. The presence of EWS increased the probability of impending depressive and manic transitions from 32-36% to 46–48% (autocorrelation) and 29–41% (standard deviation). However, the absence of EWS could not be taken as a sign that no transition would occur in the near future. The momentary states that indicated nearby transitions most accurately (predictive values: 65–100%) were full of ideas, worry, and agitation. Large individual differences in the utility of EWS were found. Conclusions EWS show theoretical promise in anticipating manic and depressive transitions in bipolar disorder, but the level of false positives and negatives, as well as the heterogeneity within and between individuals and preprocessing methods currently limit clinical utility.

Funder

h2020 european research council

zonmw

rob giel research center

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Psychiatry and Mental health

Reference62 articles.

1. Altman DG, Bland JM. Statistics notes: diagnostic tests 2: predictive values. BMJ. 1994;309:102.

2. Altman EG, Hedeker D, Peterson JL, Davis JM. The altman self-rating mania scale. Biolpsychiatry. 1997;42(10):948.

3. Auguie B. gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra. 2017.

4. Bayani A, Hadaeghi F, Jafari S, Murray G. Critical slowing down as an early warning of transitions in episodes of bipolar disorder: a simulation study based on a computational model of circadian activity rhythms. Chronobiol Int. 2017;34(2):235–45.

5. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B. 1995;57(1):289–300.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3