Scent dog identification of SARS-CoV-2 infections in different body fluids

Author:

Jendrny Paula,Twele Friederike,Meller Sebastian,Schulz Claudia,von Köckritz-Blickwede Maren,Osterhaus Albertus Dominicus Marcellinus Eras,Ebbers Hans,Ebbers Janek,Pilchová Veronika,Pink Isabell,Welte Tobias,Manns Michael Peter,Fathi Anahita,Addo Marylyn Martina,Ernst Christiane,Schäfer Wencke,Engels Michael,Petrov Anja,Marquart Katharina,Schotte Ulrich,Schalke Esther,Volk Holger Andreas

Abstract

Abstract Background The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies. Methods Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study. Results Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5–94.44%) and specificity of 95% (95% CI: 93.4–96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67–100%) and 98% (95% CI: 94.87–100%) for urine, 91% (95% CI: 71.43–100%) and 94% (95% CI: 90.91–97.78%) for sweat, 82% (95% CI: 64.29–95.24%), and 96% (95% CI: 94.95–98.9%) for saliva respectively. Conclusions The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient’s symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3