A lagrange programming neural network approach for nuclear norm optimization

Author:

Dai Xiangguang,Qiu Jian,Wan Chaoyang,Dai FachengORCID

Abstract

This article proposes a continuous-time optimization approch instead of tranditional optimiztion methods to address the nuclear norm minimization (NNM) problem. Refomulating the NNM into a matrix form, we propose a Lagrangian programming neural network (LPNN) to solve the NNM. Moreover, the convergence condtions of LPNN are presented by the Lyapunov method. Convergence experiments are presented to demonstrate the convergence of LPNN. Compared with tranditional algorithms of NNM, the proposed algorithm outperforms in terms of image recovery.

Funder

The Science and Technology Research Program of Chongqing Municipal Education Commission

The Opening fund of Chongqing Engineering Research Center of Internet of Things and Intelligent Control Technology

Science and Technology Innovation Smart Agriculture Project of Science and Technology Department, Wanzhou District of Chongqing

The Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing

Publisher

Public Library of Science (PLoS)

Reference25 articles.

1. On the rank minimization problem over a positive semidefinite linear matrix inequality[J];M Mesbahi;IEEE Transactions on Automatic Control,1997

2. A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method[J];X Luo;IEEE transactions on neural networks and learning systems,2015

3. Shape and motion from image streams under orthography: a factorization method[J];C Tomasi;International journal of computer vision,1992

4. Exact matrix completion via convex optimization[J];E Candes;Communications of the ACM,2012

5. Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization[J]. Advances in neural information processing systems, 2009, 22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3