Estimating tuberculosis drug resistance amplification rates in high-burden settings

Author:

Karmakar Malancha,Ragonnet Romain,Ascher David B.,Trauer James M.,Denholm Justin T.

Abstract

Abstract Background Antimicrobial resistance develops following the accrual of mutations in the bacterial genome, and may variably impact organism fitness and hence, transmission risk. Classical representation of tuberculosis (TB) dynamics using a single or two strain (DS/MDR-TB) model typically does not capture elements of this important aspect of TB epidemiology. To understand and estimate the likelihood of resistance spreading in high drug-resistant TB incidence settings, we used epidemiological data to develop a mathematical model of Mycobacterium tuberculosis (Mtb) transmission. Methods A four-strain (drug-susceptible (DS), isoniazid mono-resistant (INH-R), rifampicin mono-resistant (RIF-R) and multidrug-resistant (MDR)) compartmental deterministic Mtb transmission model was developed to explore the progression from DS- to MDR-TB in The Philippines and Viet Nam. The models were calibrated using data from national tuberculosis prevalence (NTP) surveys and drug resistance surveys (DRS). An adaptive Metropolis algorithm was used to estimate the risks of drug resistance amplification among unsuccessfully treated individuals. Results The estimated proportion of INH-R amplification among failing treatments was 0.84 (95% CI 0.79–0.89) for The Philippines and 0.77 (95% CI 0.71–0.84) for Viet Nam. The proportion of RIF-R amplification among failing treatments was 0.05 (95% CI 0.04–0.07) for The Philippines and 0.011 (95% CI 0.010–0.012) for Viet Nam. Conclusion The risk of resistance amplification due to treatment failure for INH was dramatically higher than RIF. We observed RIF-R strains were more likely to be transmitted than acquired through amplification, while both mechanisms of acquisition were important contributors in the case of INH-R. These findings highlight the complexity of drug resistance dynamics in high-incidence settings, and emphasize the importance of prioritizing testing algorithms which allow for early detection of INH-R.

Funder

Melbourne Research, University of Melbourne

National Health and Medical Research Council

NHMRC

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3