Mathematical Modelling and Tuberculosis: Advances in Diagnostics and Novel Therapies

Author:

Zwerling Alice1ORCID,Shrestha Sourya1ORCID,Dowdy David W.1

Affiliation:

1. Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA

Abstract

As novel diagnostics, therapies, and algorithms are developed to improve case finding, diagnosis, and clinical management of patients with TB, policymakers must make difficult decisions and choose among multiple new technologies while operating under heavy resource constrained settings. Mathematical modelling can provide helpful insight by describing the types of interventions likely to maximize impact on the population level and highlighting those gaps in our current knowledge that are most important for making such assessments. This review discusses the major contributions of TB transmission models in general, namely, the ability to improve our understanding of the epidemiology of TB. We focus particularly on those elements that are important to appropriately understand the role of TB diagnosis and treatment (i.e., what elements of better diagnosis or treatment are likely to have greatest population-level impact) and yet remain poorly understood at present. It is essential for modellers, decision-makers, and epidemiologists alike to recognize these outstanding gaps in knowledge and understand their potential influence on model projections that may guide critical policy choices (e.g., investment and scale-up decisions).

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3