Human microbiota dysbiosis after SARS-CoV-2 infection have the potential to predict disease prognosis

Author:

Zhou Jie,Yang Xiping,Yang Yuecong,Wei Yiru,Lu Dongjia,Xie Yulan,Liang Hao,Cui Ping,Ye Li,Huang Jiegang

Abstract

Abstract Background The studies on SARS-CoV-2 and human microbiota have yielded inconsistent results regarding microbiota α-diversity and key microbiota. To address these issues and explore the predictive ability of human microbiota for the prognosis of SARS-CoV-2 infection, we conducted a reanalysis of existing studies. Methods We reviewed the existing studies on SARS-CoV-2 and human microbiota in the Pubmed and Bioproject databases (from inception through October 29, 2021) and extracted the available raw 16S rRNA sequencing data of human microbiota. Firstly, we used meta-analysis and bioinformatics methods to reanalyze the raw data and evaluate the impact of SARS-CoV-2 on human microbial α-diversity. Secondly, machine learning (ML) was employed to assess the ability of microbiota to predict the prognosis of SARS-CoV-2 infection. Finally, we aimed to identify the key microbiota associated with SARS-CoV-2 infection. Results A total of 20 studies related to SARS-CoV-2 and human microbiota were included, involving gut (n = 9), respiratory (n = 11), oral (n = 3), and skin (n = 1) microbiota. Meta-analysis showed that in gut studies, when limiting factors were studies ruled out the effect of antibiotics, cross-sectional and case–control studies, Chinese studies, American studies, and Illumina MiSeq sequencing studies, SARS-CoV-2 infection was associated with down-regulation of microbiota α-diversity (P < 0.05). In respiratory studies, SARS-CoV-2 infection was associated with down-regulation of α-diversity when the limiting factor was V4 sequencing region (P < 0.05). Additionally, the α-diversity of skin microbiota was down-regulated at multiple time points following SARS-CoV-2 infection (P < 0.05). However, no significant difference in oral microbiota α-diversity was observed after SARS-CoV-2 infection. ML models based on baseline respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. The shared differential Prevotella and Streptococcus in the gut, respiratory tract, and oral cavity was associated with the severity and recovery of SARS-CoV-2 infection. Conclusions SARS-CoV-2 infection was related to the down-regulation of α-diversity in the human gut and respiratory microbiota. The respiratory microbiota had the potential to predict the prognosis of individuals infected with SARS-CoV-2. Prevotella and Streptococcus might be key microbiota in SARS-CoV-2 infection.

Funder

Innovation Project of Guangxi Graduate Education

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3