Author:
de Laval Franck,Grosset-Janin Anaïs,Delon François,Allonneau Alexandre,Tong Christelle,Letois Flavie,Couderc Anne,Sanchez Marc-Antoine,Destanque César,Biot Fabrice,Raynaud Françoise,Bigaillon Christine,Ferraris Olivier,Simon-Loriere Etienne,Enouf Vincent,Andriamanantena Dinaherisoa,de Santi Vincent Pommier,Javelle Emilie,Mérens Audrey
Abstract
Abstract
Background
This study presents the methods and results of the investigation into a SARS-CoV-2 outbreak in a professional community. Due to the limited testing capacity available in France at the time, we elaborated a testing strategy according to pre-test probability.
Methods
The investigation design combined active case finding and contact tracing around each confirmed case with testing of at-risk contact persons who had any evocative symptoms (n = 88). One month later, we performed serology testing to test and screen symptomatic and asymptomatic cases again (n = 79).
Results
Twenty-four patients were confirmed (14 with RT-PCR and 10 with serology). The attack rate was 29% (24/83). Median age was 40 (24 to 59), and the sex ratio was 15/12. Only three cases were asymptomatic (= no symptoms at all, 13%, 95% CI, 3–32). Nineteen symptomatic cases (79%, 95% CI, 63–95) presented a respiratory infection, two of which were severe. All the RT-PCR confirmed cases acquired protective antibodies.
Median incubation was 4 days (from 1 to 13 days), and the median serial interval was 3 days (0 to 15). We identified pre-symptomatic transmission in 40% of this cluster, but no transmission from asymptomatic to symptomatic cases.
Conclusion
We report the effective use of targeted testing according to pre-test probability, specifically prioritizing symptomatic COVID-19 diagnosis and contact tracing. The asymptomatic rate raises questions about the real role of asymptomatic infected people in transmission. Conversely, pre-symptomatic contamination occurred frequently in this cluster, highlighting the need to identify, test, and quarantine asymptomatic at-risk contact persons (= contact tracing). The local lockdown imposed helped reduce transmission during the investigation period.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Xie Y, Wang Z, Liao H, Marley G, Wu D, Tang W. Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):640.
2. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032.
3. Centre d’épidémiologie et de santé publique des armées. Investigation de l’épidémie de COVID-19 au sein du groupe aéronaval. 2020. Available on : https://www.defense.gouv.fr/content/download/583466/9938746/file/20200405_929_ARM_SSA_CESPA_rapport_epidemie_covid19_Gan_VEXP.pdf
4. Bernard Stoecklin S, Rolland P, Silue Y, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2020;25(6):2000094.
5. Salje H, Kiem CT, Lefrancq N, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208–11. https://doi.org/10.1126/science.abc3517.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献