A framework for evaluating health system surveillance sensitivity to support public health decision-making for malaria elimination: a case study from Indonesia

Author:

Ahmad Riris Andono,Nelli LucaORCID,Surendra Henry,Arisanti Risalia Reni,Lesmanawati Dyah Ayu Shinta,Byrne Isabel,Dumont Elin,Drakeley Chris,Stresman Gillian,Wu Lindsey

Abstract

Abstract Background The effectiveness of a surveillance system to detect infections in the population is paramount when confirming elimination. Estimating the sensitivity of a surveillance system requires identifying key steps in the care-seeking cascade, from initial infection to confirmed diagnosis, and quantifying the probability of appropriate action at each stage. Using malaria as an example, a framework was developed to estimate the sensitivity of key components of the malaria surveillance cascade. Methods Parameters to quantify the sensitivity of the surveillance system were derived from monthly malaria case data over a period of 36 months and semi-quantitative surveys in 46 health facilities on Java Island, Indonesia. Parameters were informed by the collected empirical data and estimated by modelling the flow of an infected individual through the system using a Bayesian framework. A model-driven health system survey was designed to collect empirical data to inform parameter estimates in the surveillance cascade. Results Heterogeneity across health facilities was observed in the estimated probability of care-seeking (range = 0.01–0.21, mean ± sd = 0.09 ± 0.05) and testing for malaria (range = 0.00–1.00, mean ± sd = 0.16 ± 0.29). Care-seeking was higher at facilities regularly providing antimalarial drugs (Odds Ratio [OR] = 2.98, 95% Credible Intervals [CI]: 1.54–3.16). Predictably, the availability of functioning microscopy equipment was associated with increased odds of being tested for malaria (OR = 7.33, 95% CI = 20.61). Conclusions The methods for estimating facility-level malaria surveillance sensitivity presented here can help provide a benchmark for what constitutes a strong system. The proposed approach also enables programs to identify components of the health system that can be improved to strengthen surveillance and support public-health decision-making.

Funder

Bill and Melinda Gates Foundation

Dana FoundationLembaga Pengelola Dana Pendidikan

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Reference29 articles.

1. World Health Organization: Global technical strategy for malaria 2016–2030: World Health Organization; 2015.

2. World Health Organization: Zeroing in on malaria elimination: final report of the E-2020 initiative. In: Zeroing in on malaria elimination: final report of the E-2020 initiative. edn.; 2021.

3. Organization WH. Preparing for certification of malaria elimination. Geneva: World Health Organization; 2020. p. 62.

4. Cameron A, Njeumi F, Chibeu D, Martin T. Risk-based disease surveillance: Food and Agriculture Organization of the United Nations (FAO); 2014.

5. World Health Organization: “Zero malaria starts with me”: history of malaria elimination in Indonesia helps to shape a malaria-free future. Available from: https://www.whoint/indonesia/news/feature-stories/detail/zero-malaria-starts-with-me-history-of-malaria-elimination-in-indonesia-helps-to-shape-a-malaria-free-future. 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3