Author:
Espinoza Nereyda,Rojas Jesús,Pollett Simon,Meza Rina,Patiño Lilian,Leiva Manuel,Camiña Máximo,Bernal Manuela,Reynolds Nathanael D.,Maves Ryan,Tilley Drake H.,Kasper Matthew,Simons Mark P.
Abstract
Abstract
Background
Campylobacter jejuni is a leading cause of bacterial diarrhea worldwide, and increasing rates of fluoroquinolone (FQ) resistance in C. jejuni are a major public health concern. The rapid detection and tracking of FQ resistance are critical needs in developing countries, as these antimicrobials are widely used against C. jejuni infections. Detection of point mutations at T86I in the gyrA gene by real-time polymerase chain reaction (RT-PCR) is a rapid detection tool that may improve FQ resistance tracking.
Methods
C. jejuni isolates obtained from children with diarrhea in Peru were tested by RT-PCR to detect point mutations at T86I in gyrA. Further confirmation was performed by sequencing of the gyrA gene.
Results
We detected point mutations at T86I in the gyrA gene in 100% (141/141) of C. jejuni clinical isolates that were previously confirmed as ciprofloxacin-resistant by E-test. No mutations were detected at T86I in gyrA in any ciprofloxacin-sensitive isolates.
Conclusions
Detection of T86I mutations in C. jejuni is a rapid, sensitive, and specific method to identify fluoroquinolone resistance in Peru. This detection approach could be broadly employed in epidemiologic surveillance, therefore reducing time and cost in regions with limited resources.
Funder
U.S. Department of Defense's Global Emerging Infection Systems
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献