Author:
Huang Zeyong,Teng Wenbin,Yao Liuxu,Xie Kai,Hang Suqin,He Rui,Li Yuhong
Abstract
Abstract
Background
Sepsis-induced small-intestinal injury is associated with increased morbidity and mortality. Our previous study and other papers have shown that HIF-1α has a protective effect on intestinal mucosal injury in septic rats. The purpose of this study is to further verify the protective effect of HIF-1α on intestinal mucosa and its molecular mechanism in vitro experiments.
Methods
Caco-2 cells were selected and experiment was divided into 2 parts. Part I: HIF-1α activator and inhibitor were used to treat lipopolysacchrides (LPS)-stimulated Caco-2 cells respectively, to explore the effect of HIF-1α on LPS induced Caco-2 cell epithelial model; Part II: mTOR activator or inhibitor combined with or without HIF-1α activator, inhibitor to treat LPS-stimulated Caco-2 cells respectively, and then the molecular mechanism of HIF-1α reducing LPS induced Caco-2 cell epithelial model damage was detected.
Results
The results showed that HIF-1α activator decreased the permeability and up regulated tight junction (TJ) expression, while HIF-1α inhibitor had the opposite effect with the HIF-1α activator. mTOR activation increased, while mTOR inhibition decreased HIF-1α protein and expression of its downstream target molecules, which can be attenuated by HIF-1α activator or inhibitor.
Conclusion
This study once again confirmed that HIF-1α alleviates LPS-induced mucosal epithelial model damage through P70S6K signalling pathway. It is of great value to explore whether HIF-2α plays crucial roles in the regulation of mucosal epithelial model functions in the future.
Funder
Zhejiang Provincial Department of Science and Technology Fund
Zhejiang Provincial Health Committee Fund
Shaoxing Science and Technology Bureau Fund
Hangzhou Medical and Health Science and Technology Project
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.
2. Nie J, Kang F, Zhang C, Chai C, He M. [Research on the signal pathway of hydrogen sulfide regulating autophagy to protect intestinal injury in sepsis]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020;32(10):1277–80. Chinese.
3. Lou X, Xue J, Shao R, Mo C, Wang F, Chen G. Postbiotics as potential new therapeutic agents for sepsis. Burns Trauma. 2023;11:tkad022.
4. Sprague JL, Kasper L, Hube B. From intestinal colonization to systemic infections: Candida albicans translocation and dissemination. Gut Microbes. 2022;14(1):2154548.
5. Walaas GA, Gopalakrishnan S, Bakke I, Skovdahl HK, Flatberg A, Østvik AE, Sandvik AK, Bruland T. Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Front Immunol. 2023;14:1095812.