Author:
Mohammdian-khoshnoud Maryam,Soltanian Ali Reza,Dehghan Arash,Farhadian Maryam
Abstract
Abstract
Background
Image segmentation is considered an important step in image processing. Fuzzy c-means clustering is one of the common methods of image segmentation. However, this method suffers from drawbacks, such as sensitivity to initial values, entrapment in local optima, and the inability to distinguish objects with similar color intensity. This paper proposes the hybrid Fuzzy c-means clustering and Gray wolf optimization for image segmentation to overcome the shortcomings of Fuzzy c-means clustering. The Gray wolf optimization has a high exploration capability in finding the best solution to the problem, which prevents the entrapment of the algorithm in local optima. In this study, breast cytology images were used to validate the methods, and the results of the proposed method were compared to those of c-means clustering.
Results
FCMGWO has performed better than FCM in separating the nucleus from the other dark objects in the cell. The clustering was validated using Vpc, Vpe, Davies-Bouldin, and Calinski Harabasz criteria. The FCM and FCMGWO methods have a significant difference with respect to the Vpc and Vpe indexes. However, there is no significant difference between the performances of the two clustering methods with respect to the Calinski-Harabasz and Davies-Bouldin indices. The results indicate the better efficacy of the proposed method.
Conclusions
The hybrid FCMGWO algorithm distinguishes the cells better in images with less detail than in images with high detail. However, FCM exhibits unacceptable performance in both low- and high-detail images.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology
Reference14 articles.
1. Dhanachandra N, Manglem K, JinaChanu Y. Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering Algorithm. Proc Comput Sci. 2015;54:764–71.
2. Chen J, Shao H, Hu C. Image Segmentation Based on Mathematical Morphological Operator. In: Travieso-Gonzalez CM, editor. Colorimetry and Image Processing [Internet]. London: IntechOpen; 2017. [cited 2022 Feb 12]. Available from: https://www.intechopen.com/chapters/58322. [cited 2022 Feb 12].
3. Singh TI, Laishram R, Roy S. Image segmentation using spatial fuzzy C means clustering and grey wolf optimizer. IEEE Int Confer Comput Intel Comput Res. 2016;2016:1–5.
4. Zanaty E. Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation. Egypt Inform J. 2012;13(1):39–58.
5. Benaichouche A, Oulhadj H, Siarry P. Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit Signal Proc. 2013;23(5):1390–400.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献