Fuzzy clustering of 24–2 visual field patterns can detect glaucoma progression

Author:

Kim Hwayeong,Moon Sangwoo,Lee Joohwang,Kim EunAh,Jin Sang Wook,Kim Jung Lim,Lee Seung Uk,Kim Jinmi,Yoo Seungtae,Lee Jiwon,Song Giltae,Lee JiwoongORCID

Abstract

Purpose To represent 24–2 visual field (VF) losses of individual patients using a hybrid approach of archetypal analysis (AA) and fuzzy c-means (FCM) clustering. Methods In this multicenter retrospective study, we classified characteristic patterns of 24–2 VF using AA and decomposed them with FCM clustering. We predicted the change in mean deviation (MD) through supervised machine learning from decomposition coefficient change. In addition, we compared the areas under the receiver operating characteristic curves (AUCs) of the decomposition coefficient slopes to detect VF progression using three criteria: MD slope, Visual Field Index slope, and pointwise linear regression analysis. Results We identified 16 characteristic patterns (archetypes or ATs) of 24–2 VF from 132,938 VFs of 18,033 participants using AA. The hybrid approach using FCM revealed a lower mean squared error and greater correlation coefficient than the AA single approach for predicting MD change (all P ≤ 0.001). Three of 16 AUCs of the FCM decomposition coefficient slopes outperformed the AA decomposition coefficient slopes in detecting VF progression for all three criteria (AT5, superior altitudinal defect; AT10, double arcuate defect; AT13, total loss) (all P ≤ 0.028). Conclusion A hybrid approach combining AA and FCM to analyze 24–2 VF can visualize VF tests in characteristic patterns and enhance detection of VF progression with lossless decomposition.

Funder

National Research Foundation of Korea

Institute of Information and Communications Technology Planning and Evaluation (IITP) under Artificial Intelligence Convergence Innovation Human Resources Development funded by the Korea government

Patient-Centered Clinical Research Coordinating Center, funded by the Ministry of Health & Welfare, Republic of Korea

Convergence Medical Institute of Technology R&D project, Pusan National University Hospital

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3