Chitosan-based foliar application modulated the yield and biochemical attributes of peach (Prunus persica L.) cv. Early Grand

Author:

Sajid Muhammad,Basit Abdul,Ullah Zafar,Shah Syed Tanveer,Ullah Izhar,Mohamed Heba I.,Ullah Inayat

Abstract

Abstract Background Peach fruits are highly perishable leading to many pre- and post-harvest problems, which adds to the reduction in the potential yield and productivity. Chitosan is a natural polysaccharide, produced after alkaline chitin deacetylation. It is one of the most preferred biopolymers due to its biocompatibility, antioxidant, anticancer, biodegradability, antimicrobial, and non-toxic properties as well as being an economical material. A pre-harvesting experiment was carried out based on the problems of peach and the importance of chitosan. Results Peach trees were foliar sprayed with different concentrations of chitosan (0, 0.50, 0.75, and 1.0%) at different times (30, 50, and 70 days after full bloom) to elucidate the effect of chitosan to peach yield and fruit quality. The results showed that foliar application of chitosan (1%) caused significant increases in fruit weight, volume, tree yield−1, fruit firmness, titratable acidity, and ascorbic acid content but caused significant decreases in total soluble solid fruit juice pH and disease incidence of peach fruit. Similarly, foliar application of chitosan after 50 days of full bloom increased fruit weight, volume, yield tree−1, firmness, titratable acidity, and ascorbic acid content with the number of fruit kg−1, total soluble solids, juice pH, and disease incidence as compared to other application times. Conclusions It is concluded that chitosan at 1% applied after 50 days of full bloom improved most of the peach attributes studied compared to the other concentrations of chitosan at 0.50 and 0.75, and control for the production of quality peach fruit.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference70 articles.

1. Abbasi NA, Iqbal Z, Maqbool M, Hafiz IA (2009) Post-harvest quality of mango (Mangifera indica L.) fruit as affected by chitosan coating. Pak J Bot 41:343–357

2. Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354

3. Abd-Alla M, Wafaa M (2010) New safe methods for controlling anthracnose disease of mango (Mangifera indica L.) fruit caused by Colletotrichum gloeosporioides (Penz.). J Am Sci 8:361–367

4. Abu-Muriefah (2013) Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. Inter Res J Agric Sci Soil Sci 6(3):192–199

5. Ahmad M, Khattak MR, Jadoon SA, Rab A, Basit A, Ullah I, Khalid MA, Ullah I, Shair M (2019) Influence of zinc sulphate on flowering and seed production of flax (Linum usitatissimum L.): a medicinal flowering plant. Int J Biosci 14:464–476

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3