Deep learning to recognize and count green leafhoppers

Author:

Proença Maria da ConceiçãoORCID,Rebelo Maria Teresa

Abstract

Abstract Background Vineyards are a crop of great economic importance in Portugal, whose production of over 224 kha of vines may be affected by evolving global changes, as new pests arrive in greater numbers at more northern latitudes. Integrated pest management requires early recognition and assessment of pests to enable a proportionate response in control. Results Using yellow sticky traps to catch green leafhoppers in the vineyards under attack, we could use the image of the traps and deep learning methods to evaluate with high accuracy the number of insects presents and establishes a procedure to assess any number of traps in a short period of time. Conclusions Implementation is possible with ordinary laptop computers and could contribute to more extensive and more frequent coverage in surveillance, since the human labor required to count hundreds of insects in each trap is reduced to seconds.

Funder

FCT/MCTES

FCT

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference23 articles.

1. Alma A (2002) Auchenorrhyncha as pests on grapevine. Denisia, zugleich Kataloge des OÖ. Landesmuseums Neue Folge 176:541–548

2. Backus E, Serrano M, Ranger C (2005) Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology. Annu Rev Entomol 50:125–151

3. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z (2018) Deep learning and its applications in biomedicine. Genomics Proteomics Bioinform 16(1):17–32. https://doi.org/10.1016/j.gpb.2017.07.003

4. Cho J, Choi J, Qiao M, Ji CW, Kim HY (2007) Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis. Int J Math Comput Simul 1:46–53

5. Coutinho J, Amado C, Barateiro A, Quartau J, Rebelo MT (2015) First record of the leafhopper Asymmetrasca decedens (Homoptera: Cidadellidae) in mainland Portugal. Revista De Ciências Agrárias 38:213–219

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision Based Detection of Mealybug Infection in Custard Apple Using Machine Learning;2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT);2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3