MECHANISMS OF HOPPERBURN: An Overview of Insect Taxonomy, Behavior, and Physiology

Author:

Backus Elaine A.1,Serrano Miguel S.2,Ranger Christopher M.3

Affiliation:

1. Exotic and Invasive Diseases and Pests Unit, USDA Agricultural Research Service, Parlier, California 93648;

2. Compania Agricola Colombiana Ltda, Avenida 100 # 7–33, Piso 19, Oficina 1901, Bogota, Colombia;

3. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers—The State University of New Jersey, Chatsworth, New Jersey 08019

Abstract

▪ Abstract  Hopperburn is a noncontagious disease of plants caused by the direct feeding damage of certain leafhoppers and planthoppers. Although long studied, especially with Empoasca spp. leafhoppers (Cicadellidae: Typhlocybinae), the mechanisms underlying hopperburn have only recently been elucidated. Hopperburn is caused by a dynamic interaction between complex insect feeding stimuli (termed hopperburn initiation) and complex plant responses (termed the hopperburn cascade). Herein we review the nature of the feeding stimuli in hopperburn initiation, especially for Empoasca spp., which we also compare with the planthopper Nilaparvata lugens. Contrary to previous reports, Empoasca hopperburn is not caused solely by toxic saliva. Instead, it is caused by a plant wound response triggered by a unique type of stylet movement, which is then exacerbated by saliva. Electrical penetration graph monitoring has revealed that all Empoasca spp. are cell rupture feeders, not sheath feeders, and that certain tactics of that feeding strategy are more damaging than others. Measuring the proportions of the most damaging feeding led to development of a resistance index, the Stylet Penetration Index, which can predict hopperburn severity in different plants or under different environmental conditions and can supplement or replace traditional, field-based resistance indices.

Publisher

Annual Reviews

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3