Effects of climatic changes on olive fly, Bactrocera oleae (Rossi) population dynamic with respect to the efficacy of its larval parasitoid in Egyptian olive trees

Author:

Abd El-Salam Ahmed Mohamed EzzatORCID,Salem Sadek Abdel-Wahed,Abdel-Rahman Ragab Shaker,El-Behery Hoda Hassan,Magd Elden Mona Ahmed

Abstract

Abstract Background The potential effects of two parameters of climatic change conditions (temperature and relative humidity) on the population dynamics of the olive fly across the two ecological areas in Egypt were studied. The olive trees in El-Behera Governorate are more affected by the olive fly compared to the olive trees in the orchard of El-Fayoum Governorate. In this study, the character of climate change in influencing the dynamics of insect population and associated parasites was discussed at the regional level. Results The results exhibited that the olive trees in the coast governorate were more susceptible to the olive fly than the inner governorate. The parasitism percentage was recorded 41.7 and 46.4% at the beginning of the seasons 2016 and 2017, respectively in El-Fayoum Governorate. In El-Behera Governorate, the maximum parasitism percentage was recorded 49.5% (2016 season), while the 2017 season, the parasitism percentage was recorded 50.4%. The majority of the ordinary parasite was Psyttalia concolor in the two regions. Conclusion The study clarifies that there is a positive correlation between B. oleae abundance and the effects of temperature and its parasitoid, Psyttalia concolor. Further, there is no significance found between the olive fly and relative humidity and its parasitoid populations.

Funder

National Research Centre

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference34 articles.

1. Abd El-Salam AME, Salem SA, El-Kholy MY, Abdel-Rahman RS (2018) The repellent and toxic effects of some eco-friendly formulations against the important olive tree insects in Egypt. Biosci Res 15(4):3914–3925

2. Abd El-Salam AME, Salem SA, El-Kholy MY, Abdel-Rahman RS , Abdel-Raheem MA (2019) Role of the olive fly, Bactrocera oleae (Rossi) traps in integrated pest management on olive trees under climatic change conditions in Egypt. Plant Archives, 19, Supplement 2, 457-461.

3. Bale J, Masters G, Hodkinson I, Awmack C, Jnbezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JG, Harrington R, Hartley S, Jones TH, Lindroth L, Press M, Mrnioudis I, Watt A, Whittaker A (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. J Global Change Biol 8:1–16

4. Battisti A (2004) Forests and climate change – lessons from insects. Forest. 1:17–24

5. Benelli G, Revadi S, Carpita A, Giunti G, Raspi A, Anfora G, Canale A (2012) Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) to Ceratitis capitates induced fruit volatiles. Biol Control 64:116–124

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3