In silico design and pharmacokinetics investigation of some novel hepatitis C virus NS5B inhibitors: pharmacoinformatics approach

Author:

Ejeh StephenORCID,Uzairu Adamu,Shallangwa Gideon A.,Abechi Stephen E.,Ibrahim Muhammad Tukur

Abstract

Abstract Background Hepatitis C virus (HCV) is a contagious disease that damages the liver over time, eventually leading to cirrhosis and death. Chronic HCV infection is regarded as a serious health problem worldwide, impacting up to 3% of the populace and killing over 300,000 people annually. Quick reproduction driven by non-structural protein 5B (NS5B), which is a possible target spot for the development of anti-HCV vaccines, causes genomic diversity. Sofosbuvir, a new oral NS5B inhibitor, was recently licensed by the US Food and Drug Administration for the cure of HCV. Unfortunately, it has received a lot of attention due to its financial concerns and adverse effects. As a result, there is a pressing need to explore alternative HCV treatments that are both cost-effective and free of adverse effects. In this study, we used a Pharmacoinformatics-based strategy to identify and design bioactive molecules that are anti-HCV NS5B. The simulation outcomes are compared to Sofosbuvir simulation outcomes. Results Based on docking simulation, the proposed molecules have high-binding energies at the range of − 41.71 to − 39.90 kcal/mol against − 30.34 kcal/mol of Sofosbuvir. Furthermore, when compared to Sofosbuvir, which has a drug score of 0.31 (31% performance), the ADMET analysis of the lead compound demonstrates superior performance with a drug score of 0.88 (88% performance). Conclusions The findings revealed that alternative bioactive molecules vary substantially in docking rankings at a range of − 41.71 to − 39.90 kcal/mol against − 30.34 kcal/mol of Sofosbuvir, the FDA-approved NS5B enzyme inhibitor, and when compared to Sofosbuvir, which has a drug score of 0.31, the ADMET analysis of the chosen compound (1c) demonstrates superior performance with a drug score of 0.88.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3