SINE jumping contributes to large-scale polymorphisms in the pig genomes

Author:

Chen Cai,D’Alessandro Enrico,Murani Eduard,Zheng Yao,Giosa Domenico,Yang Naisu,Wang Xiaoyan,Gao Bo,Li Kui,Wimmers Klaus,Song Chengyi

Abstract

Abstract Background Molecular markers based on retrotransposon insertion polymorphisms (RIPs) have been developed and are widely used in plants and animals. Short interspersed nuclear elements (SINEs) exert wide impacts on gene activity and even on phenotypes. However, SINE RIP profiles in livestock remain largely unknown, and not be revealed in pigs. Results Our data revealed that SINEA1 displayed the most polymorphic insertions (22.5 % intragenic and 26.5 % intergenic), followed by SINEA2 (10.5 % intragenic and 9 % intergenic) and SINEA3 (12.5 % intragenic and 5.0 % intergenic). We developed a genome-wide SINE RIP mining protocol and obtained a large number of SINE RIPs (36,284), with over 80 % accuracy and an even distribution in chromosomes (14.5/Mb), and 74.34 % of SINE RIPs generated by SINEA1 element. Over 65 % of pig SINE RIPs overlap with genes, most of them (> 95 %) are in introns. Overall, about one forth (23.09 %) of the total genes contain SINE RIPs. Significant biases of SINE RIPs in the transcripts of protein coding genes were observed. Nearly half of the RIPs are common in these pig breeds. Sixteen SINE RIPs were applied for population genetic analysis in 23 pig breeds, the phylogeny tree and cluster analysis were generally consistent with the geographical distributions of native pig breeds in China. Conclusions Our analysis revealed that SINEA1–3 elements, particularly SINEA1, are high polymorphic across different pig breeds, and generate large-scale structural variations in the pig genomes. And over 35,000 SINE RIP markers were obtained. These data indicate that young SINE elements play important roles in creating new genetic variations and shaping the evolution of pig genome, and also provide strong evidences to support the great potential of SINE RIPs as genetic markers, which can be used for population genetic analysis and quantitative trait locus (QTL) mapping in pig.

Funder

National Natural Science Foundation of China

Independent Innovation Fund Project of Agricultural Science and Technology in Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

China Postdoctoral Science Foundation

High-end Talent Support Program of Yangzhou University

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3