Anti-IgLON5 antibodies cause progressive behavioral and neuropathological changes in mice

Author:

Ni You,Feng Yifan,Shen Dingding,Chen Ming,Zhu Xiaona,Zhou Qinming,Gao Yining,Liu Jun,Zhang Qi,Shen Yuntian,Peng Lisheng,Zeng Zike,Yin Dou,Hu Ji,Chen ShengORCID

Abstract

Abstract Background Anti-IgLON5 disease is a rare neurological disorder associated with autoantibodies against the neuronal cell adhesion protein, IgLON5. Cellular investigations with human IgLON5 antibodies have suggested an antibody-mediated pathogenesis, but whether human IgLON5 autoantibodies can induce disease symptoms in mice is yet to be shown. Moreover, the effects of anti-IgLON5 autoantibodies on neurons and the precise molecular mechanisms in vivo remain controversial. Methods We investigated the effects of anti-IgLON5 antibodies in vivo and evaluated their long-term effects. We used two independent passive-transfer animal models and evaluated the effects of the antibodies on mouse behaviors at different time points from day 1 until day 30 after IgG infusion. A wide range of behaviors, including tests of locomotion, coordination, memory, anxiety, depression and social interactions were established. At termination, brain tissue was analyzed for human IgG, neuronal markers, glial markers, synaptic markers and RNA sequencing. Results These experiments showed that patient’s anti-IgLON5 antibodies induced progressive and irreversible behavioral deficits in vivo. Notably, cognitive abnormality was supported by impaired average gamma power in the CA1 during novel object recognition testing. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies in the hippocampus of anti-IgLON5 IgG-injected mice, which persisted 30 days after the injection of patient’s antibodies was stopped. Microglial and astrocyte density was increased in the hippocampus of anti-IgLON5 IgG-injected mice at Day 30. Whole-cell voltage clamp recordings proved that anti-IgLON5 antibodies affected synaptic homeostasis. Further western blot investigation of synaptic proteins revealed a reduction of presynaptic (synaptophysin) and post-synaptic (PSD95 and NMDAR1) expression in anti-IgLON5 IgG-injected mice. Conclusions Overall, our findings indicated an irreversible effect of anti-IgLON5 antibodies and supported the pathogenicity of these antibodies in vivo.

Funder

Double Hundred Talents Support Program of Shanghai Jiaotong University School of Medicine

Shanghai Shuguang Plan Project

Shanghai outstanding young scholars Project

Clinical Research Plan of SHDC

National Natural Science Foundation of China

Shanghai talent development project

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3