Unbiased multitissue transcriptomic analysis reveals complex neuroendocrine regulatory networks mediated by spinal cord injury-induced immunodeficiency

Author:

Zeng Hong,Cheng Li,Lu De-zhi,Fan Shuai,Wang Ke-xin,Xu Li-li,Cai Bin,Zhou Mou-wang,Wang Jin-wu

Abstract

Abstract Background Spinal cord injury (SCI), which causes loss of sensory and motor function in the body below the level of injury, is a devastating disease of the central nervous system. SCI leads to severe secondary immunosuppression, called SCI-induced immunodeficiency syndrome (SCI-IDS), which is characterized by increased susceptibility to infection and further exacerbates neurological dysfunction. Several studies have suggested that SCI-IDS is an independent risk factor for poor neurological prognosis. SCI-IDS predominantly occurs following injury above the T5 levels and eventually leads to systemic immune failure, possibly via the sympathetic–adrenal medullary axis and the hypothalamic‒pituitary‒adrenal (HPA) axis. However, the mechanism remains unclear. Methods and objectives The concentrations of adrenocorticotropic hormone and cortisol in plasma, as well as changes in sympathetic activity (blood pressure and catecholamine levels in plasma), were assessed in rats in the high-level (T3) spinal cord injury (T3-SCI) group and the low-level (T10) spinal cord injury (T10-SCI) group. Second, the differential regulation of the gene network between the sympathetic–adrenal medullary axis and the HPA axis was explored by histology and multitissue transcriptomics, and the neuroendocrine–immune network associated with SCI-IDS was further elucidated. Results The spleen and thymus gland, which are secondary immune organs, were significantly atrophied in rats in the T3-SCI group, and the white pulp of the spleen was significantly atrophied. The level of cortisol, which is mediated by the adrenal glands, was markedly elevated, but norepinephrine levels were markedly decreased. There was no difference in adrenocorticotropic hormone expression between any of the groups. The transcriptome analysis results showed that the downregulated differentially expressed genes (DEGs) in the T3-SCI group were enriched in the GO term immunoregulation, indicating that splenic immune function was markedly impaired after high-level SCI. The upregulated DEGs in the hypothalamus (hub genes: Nod2, Serpine1, Cebpb, Nfkbil1, Ripk2, Zfp36, Traf6, Akap8, Gfer, Cxcl10, Tnfaip3, Icam1, Fcgr2b, Ager, Dusp10, and Mapkapk2) were significantly enriched in inflammatory pathways, and the downregulated genes (hub genes: Grm4, Nmu, P2ry12, rt1-bb1, Oprm1, Zfhx2, Gpr83, and Chrm2) were enriched in pathways related to inhibitory Gi-mediated G protein-coupled receptor (Gi-GPCR) neurons and neuropeptide changes. The upregulated genes in the adrenal glands (hub genes: Ciart, per2, per3, cry1, and cry2) were enriched in cortisol secretion and circadian rhythm changes, and the downregulated genes (hub genes: IL7r, rt1-bb, rt1-bb1, rt1-da, rt1-ba, cd74, cxcr3, vcam1, ccl5, bin1, and IL8) were significantly enriched in MHC-mediated immune responses. Conclusions To explore the possible mechanism underlying SCI-IDS, this study assessed the differential regulation of the gene network associated with neuroendocrine immunity after SCI. Progressive neuroinflammation spreads after injury, and neurotransmission through Gi-mediated G protein-coupled receptors in the HPA axis and neuropeptide production by the hypothalamus are inhibited. Disruption of the connection between the hypothalamus and the adrenal glands causes autonomous regulation of the adrenal glands, disturbance of circadian rhythm and finally hypercortisolemia, leading to general suppression of peripheral adaptive immunity. Neuraxial nerve inflammation caused by SCI persists indefinitely, blocking nerve repair; persistent system-wide immunosuppression in the periphery results in increased susceptibility to infection, leading to poor neurological prognosis.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

the Postdoctoral Scientific Research Foundation of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine

the Biomaterials and Regenerative Medicine Institute Cooperative Research Project, the Shanghai Jiao tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3